

AUTOMATIC TARGET RECOGNITION

USER INTERFACE TOOL

THESIS

David A. Kerns, Capt, USAF

AFIT/GOR/ENS/07-15

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GOR/ENS/07-15

AUTOMATIC TARGET RECOGNITION USER INTERFACE TOOL

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operational Science

David A. Kerns, BS

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GOR/ENS/07-15

AUTOMATIC TARGET RECOGNITION USER INTERFACE TOOL

David A. Kerns, BS

Captain, USAF

Approved:

 Dr. Kenneth W. Bauer (Chairman) date

 Dr. Mark E. Oxley (Member) date

 iv

AFIT/GOR/ENS/07-15

 Abstract

 A computer tool to aid in selecting the best Automatic Target Recognition

(ATR) algorithm is developed. The program considers many quantifiers, accepts user-

defined parameters, allows for changes in the operational environment and presents

results in a meaningful way. It is written for Microsoft Excel.

 An ATR algorithm assigns a class label to a recognized target. General

designations can include “Friend” and “Foe.” The error of designating “Friend” as

“Foe” as well as “Foe” as “Friend” comes with a high cost. Studying each algorithm’s

error can minimize this cost. Receiver Operating Characteristic (ROC) curves provide

only information on the probabilities given a system state of declaring up to three class

labels: “True,” “False” or “Unknown.” Other quantifiers, including an alternate ROC

curve, are developed in this study to provide information on the probability of a system

state given any of multiple declarations, which is more useful to the user. Sensitivity

to prior probabilities, suggestions for user-defined parameters and areas for future

research are identified as the User Interface Tool is described in detail in this thesis.

 v

AFIT/GOR/ENS/07-15

To my family and all the friends who make me feel like family.

 vi

 Acknowledgements

I would like to express my sincere appreciation to my thesis advisor, Dr.

Kenneth Bauer, for his direction throughout this thesis research. I would also like to

thank my sponsor for his timely assistance and availability to answer any of my

questions. I would like to thank AFIT captains Ryan Caulk, Kevin Reyes, Yuri

Taitano, Joe Bellucci, and Jason Williams for being the very definition of a “Super

Group.” I would like to thank other company grade officers – including Scott Elkins,

Jennifer Elkins, Erin Johnson, Darin Findling, Tetsuo Kaieda, Christopher Gardner and

Briana Smith – for their support in helping me make time for what is important to me

and letting me know I am important to them.

Thank you to my loving parents and siblings for their understanding and

support. Finally, I would like to thank God for giving me strength, guidance, friends

and family to see me through the rough times. “Any fool can agree with you when

you’re right. A true friend will agree with you when you’re wrong.”

David A. Kerns

 vii

 Table of Contents

Page

Abstract ... iv

Acknowledgements.. vi

Table of Contents..vii

List of Figures... x

List of Tables ...xiii

I. Introduction ... 1

Background... 1

Problem Statement .. 1

Input.. 2

Data File.. 3

Algorithms and Parameters.. 7

Optional Parameters .. 9

Output ... 10

ROC Curves .. 10

Summary Data... 11

Cost Matrix ... 12

Research Objectives/Questions/Hypotheses... 12

Research Focus ... 12

Methodology... 13

Assumptions/Limitations... 13

Implications .. 15

Preview... 16

II. Literature Review ... 17

Historical Perspective.. 17

Error in Hypothesis Tests .. 17

Receiver Operating Characteristic ... 18

 viii

Error in ATR Comparisons.. 19

Feature Determination ... 21

Decision Determination... 22

User-Defined Input Variables .. 24

Application of Historical Perspective... 25

Possible Algorithm Performance Measures ... 26

Error Exploration .. 27

Error with “Unknown” Allowed .. 27

Error with Multiple Classifications .. 29

Decision-Making Process .. 32

Multiple Classifier Systems ... 32

Fusion Comparisons .. 34

III. Methodology... 36

Input ... 36

Input Sheet Solutions... 38

Master Worksheet ... 40

User-Defined Parameters... 41

Algorithm Calculations ... 47

ROC Curves.. 53

ROC Curve Calculations ... 55

ROC Curve Points and Plots.. 61

Vertical ROC Curves... 66

Calculating Vertical ROC Curves .. 68

Prior Uncertainty... 72

ROC Curves Based on Normalized Thresholds.. 76

Summary Statistics.. 79

IV. Results and Analysis ... 84

First Analysis .. 86

Second Analysis.. 103

Conclusion .. 111

V. Discussion.. 113

 ix

Limitations.. 113

Future Studies ... 113

Confusers as “Unknown” rather than natural “Clutter” 114

Relevance of Unknown Misidentification Assumption 114

Use Solver to generate User-Defined parameters. .. 116

Other Future Research. .. 117

Contributions/Implications .. 117

Appendix A: Worksheet List... 120

Appendix B: Pseudocode .. 122

Bibliography... 133

 x

 List of Figures

Figure Page

Figure 1. T2 (Tiger) Target Likeness Scores... 5

Figure 2. T3 (Panzer) Target Likeness Scores. ... 5

Figure 3. T4 (T-72) Target Likeness Scores. .. 5

Figure 4. T5 (Bradley) Target Likeness Scores... 6

Figure 5. T1 (Confuser or Clutter) Target Likeness Scores. .. 6

Figure 6. Receiver Operating Characteristic Curve comparing three algorithms. 19

Figure 7. Surface plot of ROC Curve. (Albrecht, 2005:98) 29

Figure 8. Interface panel for opening a spreadsheet to be analyzed. 41

Figure 9. User-Defined Parameters Blank Sheet. .. 44

Figure 10. User-Defined Parameters Filled-in. ... 44

Figure 11. Placement of data for algorithm calculations. .. 48

Figure 12. Snapshot of the entire “Algorithms” worksheet. 49

Figure 13. Area for user to change user-defined parameters...................................... 49

Figure 14. Truth data calculations spreadsheet screenshot. 57

Figure 15. Positioning of Truth summary data.. 61

Figure 16. Bayes' Rule Applied. ... 63

Figure 17. ROC curve for one target... 64

Figure 18. ROC curve with Current Thresholds.. 65

Figure 19. Placement for calculating Vertical ROC curves. 68

Figure 20. Vertical ROC Curve for Tiger. .. 69

Figure 21. Vertical ROC Curve for T-72. ... 70

Figure 22. User-Defined Priors... 72

 xi

Figure Page

Figure 23. Snapshot of a Priors worksheet.. 74

Figure 24. Priors Curve for Tiger. .. 74

Figure 25. Priors Curve for T-72. ... 75

Figure 26. Normalized ROC Curve for Tiger.. 78

Figure 27. Normalized ROC Curve for T-72. ... 78

Figure 28. Snapshot of "Stats" worksheet. .. 79

Figure 29. Steps for computing a Cost Matrix. ... 83

Figure 30. Sample data parameters. .. 84

Figure 31. Tiger scores showing True Scores range between 0.49 and 1.0 85

Figure 32. ROC Curve for Target 2, Tiger.. 87

Figure 33. ROC Curve for Target 3, Panzer.. 88

Figure 34. ROC Curve Target 4, T-72. ... 88

Figure 35. ROC Curve Target 5, Bradley. .. 89

Figure 36. Adjusted Thresholds: Left (High Threshold), Right (Low). 90

Figure 37. D-Bound Current point changing with Delta-threshold. 92

Figure 38. Vertical ROC Curve for Target 2, Tiger. ... 93

Figure 39. Vertical ROC Curve for Target 3, Panzer. ... 93

Figure 40. Vertical ROC Curve for Target 4, T-72. .. 94

Figure 41. Vertical ROC Curve for Target 5, Bradley... 94

Figure 42. Normalized ROC Curve for Target 2, Tiger... 97

Figure 43. Normalized ROC Curve for Target 3, Panzer... 97

Figure 44. Normalized ROC Curve for Target 4, T-72.. 97

Figure 45. Normalized ROC Curve for Target 5, Bradley... 98

 xii

Figure Page

Figure 46. Priors Curve for T2, Tiger, and A2, TLS-Bound...................................... 99

Figure 47. Priors Curve for T3, Panzer, and A2, TLS-Bound.................................... 99

Figure 48. Priors Curve for T4, T-72, and A2, TLS-Bound..................................... 100

Figure 49. Priors Curve for T5, Bradley, and A2, TLS-Bound................................ 100

Figure 50. ROC Curve changes for Target 2, Tiger. ... 105

Figure 51. ROC Curve for Target 3, Panzer.. 105

Figure 52. ROC Curve Changes for Target 4, T-72. ... 105

Figure 53. ROC Curve Changes for Target 5, Bradley.. 106

Figure 54. First Analysis ROC Curve for Target 2, Tiger. 106

Figure 55. Second Analysis ROC Curve for Target 2, Tiger. 107

Figure 56. First Analysis Vertical ROC Curve for Target 3, Panzer. 107

Figure 57. Vertical Second Analysis ROC Curve for Target 3, Panzer.................... 108

Figure 58. First Analysis Vertical ROC Curve for Target 5, Bradley. 108

Figure 59. Vertical Second Analysis ROC Curve for Target 5, Bradley.................. 109

Figure 60. Vertical ROC Curve for Panzer and D-Bound with New to the Right. ... 109

 xiii

 List of Tables

Table Page

Table 1. Four runs from the sample data file... 2

Table 2. Classifier Evaluation Quantifiers. ... 12

Table 3. Four runs from the sample data file repeated from Table 1.......................... 22

Table 4. Classifier Evaluation Quantifiers. ... 27

Table 5. Cost Confusion Matrix. .. 31

Table 6. Four runs from the sample data... 36

Table 7. Sample Scores (Features) with invalid entries. .. 37

Table 8. Algorithm responses to the run data for a set of parameters. 43

Table 9. An example run for TLS-thresholds.. 45

Table 10. Second TLS-threshold case... 45

Table 11. Case 3 of TLS-Thresholds. ... 46

Table 12. Test Run #420 results. .. 46

Table 13. Run #420 with TLS-thresholds altered and Delta Scores calculated. 47

Table 14. Biggest-TLS Calculation. ... 51

Table 15. Biggest-D Calculation. ... 51

Table 16. “TLS & D” Calculations... 52

Table 17. Truth data calculations.. 57

Table 18. Probability Matrix. ... 58

Table 19. Example for Alt_D. .. 59

Table 20. Table of Algorithms for one target.. 63

Table 21. Table of Algorithms for one target with Current Thresholds. 65

Table 22. Vertical ROC Curve Table for Tiger... 69

 xiv

Table Page

Table 23. Count for Biggest-TLS. .. 80

Table 24. Recall Table. .. 80

Table 25. Accuracy Table. ... 81

Table 26. Precision and F-Score Table. .. 81

Table 27. Mutual Information Table... 82

Table 28. Classifier Evaluation Quantifiers. ... 82

Table 29. Summary Statistics for first analysis. .. 102

Table 30. First Analysis summary statistics. ... 110

Table 31. Second Analysis summary statistics.. 110

 1

I. Introduction

Background

Selecting the best algorithm for Automatic Target Recognition (ATR) can save

lives by providing Air Force pilots with the best technique for distinguishing hostile

targets from friendly targets in a given operational environment. Unfortunately, no

standard measure is available to compare different ATR algorithms. Measures must be

easy to interpret and allow for meaningful comparisons between each algorithm for the

decision-maker to select the best algorithm. To meet this task, measures are identified

and methods of presentations, like a Receiver Operating Characteristic (ROC) curve, are

studied and in some cases improved. The sponsor requested a User Interface Tool

(UIT) to allow for visual comparisons and to analyze costs and benefits between each

algorithm. The tool must allow for changes in the operational environment. This

thesis describes the creation of such a tool to meet the needs of the decision-makers and

operators for an ATR UIT.

Problem Statement

Selection between ATR algorithms must provide useful information for the

operator, provide insight for the programmer, and meet the demands of a changing

operational environment. To meet these demands, the tool must compare five existing

ATR algorithms provided by the customer, be able to use input data in the format

provided, use Microsoft Excel as the primary software tool for mass availability,

produce graphical information for quick comparisons between each algorithm, provide

meaningful data for both the algorithm developer and the operator, and allow for

 2

changes in the operational environment. The problem is more clearly identified after

careful examination of what input is available and what output is expected of the tool.

Input

The customer requested both Input and Output to be accomplished through

Microsoft Excel. The original input consisted solely of a data file listing test runs and

the likeness of a target to an In-Library target. The input file consisted of a heading

and the information return from a number of runs. Each information return was listed

in a row. The row starts with a cell identifying the run. Next, the actual target

recognized during the run is placed in the “Actual” column. The final five cells show

a score between zero and one. The score shows how like the recognized target,

identified in the “Actual” column, is to the target in the column heading of the cell.

The heading and four rows of data are provided below in Table 1.

Table 1. Four runs from the sample data file.

In addition, user-defined parameters, target designations, and optional inputs

may be available. User-defined parameters are thresholds required to solve each

algorithm. Target designations are identifications of In-Library targets as more general

classes of “Friend,” “Hostile,” or “Other.” Optional input may include the population

estimates of all possible targets or costs for misidentifying targets.

Algorithm solutions are not provided. Instead, five existing algorithms for

choosing a target were suggested. Necessary parameters to compute the solution for

 3

each algorithm include thresholds of minimum values and thresholds of minimum Delta

values. These thresholds were not provided. Algorithm solutions must be solved

through the UIT.

The customer-requested input was further defined and studied before any

programming could begin.

Data File

The test data file is a list of test runs comparing an actual target to scores

against each item in the current library. The seven columns in the file included: one

column for the details of the run, one for the name of the actual target, and five scores

for each of the five items in the data file. The five items in library are named: T1, T2,

T3, T4, and T5. For simplicity, these codes are replaced with more meaningful names

in following sections. The names are Clutter, Tiger, Panzer, T-72 and Bradley,

respectively.

Although given meaningful names, the targets in the test file are generic.

They could pertain to any class – tank, aircraft, or Surface-to-Air Missile (SAM) site –

and they can pertain to any classification: Hostile, Friendly, or Neutral. It is

considered that the first target, T1, is not any object in particular, but is actually a “fuzz

ball” target meant to identify Clutter – trees, bushes, or animals – and take them out of

consideration from the other targets (Sadowski, 2006).

The scores correspond to an estimate of target probability or how “like” a

detected object is to an object in the library (Parker, 2006). They cannot be broken

down into individual assessments of likelihood, thus limiting the amount of fusion

techniques possible for this study. They will be referred to as Target Likeness Scores,

TLS, to prevent confusion with other scores.

 4

In addition, these scores are not to be confused with likelihoods. They do not

give a probability that the considered object is actually the target in the library. These

scores do not sum to one. Each score provides a relative value of how “like” the two

targets are, but some algorithms require parameters or “minimum thresholds” to be met

before an object is considered for declaration as the In-Library target. Each algorithm

uses these scores and parameters, but how they make use of them will be identified later

in this study. It is not uncommon to have high scores rating a target similar to every

other item in the library.

To illustrate how scores may be related to one another, incorrect scores can be

plotted against correct scores for each target. These ordered scatter plots are included

as Figure 1 through Figure 5. Each graph highlights a particular In-Library target.

All runs having the highlighted target as the recognized, actual target are selected for

that graph. The scores for incorrect targets are plotted on the y-axis against the score

for the true target on the x-axis. Thus, all points plotted above the true score line are

bad as they indicate an incorrect target received a higher Target Likeness Score, so the

detection system found the object more like an incorrect target. Scores below the true

score line are good, since these indicate the detection system gave the higher Target

Likeness Score to the true target.

 5

Figure 1. T2 (Tiger) Target Likeness Scores.

Figure 2. T3 (Panzer) Target Likeness Scores.

Figure 3. T4 (T-72) Target Likeness Scores.

 6

Figure 4. T5 (Bradley) Target Likeness Scores.

Figure 5. T1 (Confuser or Clutter) Target Likeness Scores.

The plots show how the true target can be confused with the other targets. For

instance, Figure 4 shows how T2 (Tiger) is often given a higher “T1” (“Clutter”) score,

but typically a lower “T4” (“T-72”) score. Thus, any Tiger encountered will likely be

confused with Clutter, but never with a T-72, based on TLS. The graphs also show

how the scores range from zero to one, but they do not add up to one. In some cases,

 7

even invalid scores can be found. These indicate missing data or bad readings.

Invalid scores are dealt with later in this study.

The test file contained 3893 runs. Each run is against an actual target that was

recognized. Actual targets include In-Library (IL) targets of T2, T3, T4 and T5 and

Out-Of-Library (OOL) targets or confusers of Con1, Con2, … Con11. T1 is not a true

target since T1 does not exist in the real world. As stated above, T1 is used to

compare found objects to a fuzz ball in the hopes of eliminating clutter. Since the

confusers are OOL, and an identification of T1 does not result in a target registering on

the view screen, any confuser found as T1 will be deemed a correct identification for the

purposes of this study. Later studies are suggested to treat confusers individually.

Algorithms and Parameters

Five algorithms were suggested for this study. The output of the study should

be understandable presentations of all meaningful information so the decision-maker

can select which algorithm is the best. The algorithms are originally coded as A1, A2,

A3, A4 and A5, but will be assigned the meaningful names of Biggest-TLS, TLS-

Bound, TLS & D, Big-D, and D-Bound, respectively, for this study.

Each algorithm’s decision can either be “Forced” or “Not Forced” (Sadowski,

2005). A Forced decision means the algorithm will return an item in the target library.

A return of “T1” will not be displayed since “T1” indicates “Clutter.” A decision that

is Not Forced may return a value of “Unknown” if certain algorithm-based criteria are

not met.

Algorithms use Target Likeness Scores, Deltas, and thresholds:

• A Target Likeness Score (TLS), as defined above, is a value between

zero and one that refers to estimates of target probability (Parker, 2005).

 8

• A minimum TLS-Threshold is a value determined for each In-Library

target. For algorithms A2 and A3, if the highest TLS Score does not

meet this value, then “Unknown” is returned. For other algorithms, the

TLS-Threshold defines the Delta value.

• A Delta score is the difference between a score and the TLS-Threshold

for each target.

• A minimum Delta-Threshold is another value determined for each

target. For algorithm A5, the largest Delta value must exceed the next

highest Delta by this value or an “Unknown” is returned.

The algorithm solutions depend on the TLS, the TLS for the other targets, the

minimum TLS-Thresholds, and/or the minimum Delta-Thresholds. Since only the

minimum thresholds are used, minimum will be implied when discussing these

thresholds. These parameters allow for algorithms to be customized to specific

situations or battlefield environments. For instance, in a high clutter, low target area,

the threshold for “Clutter” might be lowered. Thus, any score for “T1” will most

likely meet the threshold, and any Delta created (score minus TLS Threshold) will

likely be higher than all other Deltas. If a target is unlikely, TLS Threshold can be

increased to prevent low score declarations of the item. The way each algorithm uses

these values is as follows (Sadowski, 2006):

• A1 or Biggest-TLS: (Forced) The target with the highest TLS is

returned.

• A2 or TLS-Bound: (Not Forced) The target with the highest TLS is

returned if it meets the TLS-Threshold. Otherwise, “Unknown” is

returned.

 9

• A3 or TLS & D: (Not Forced) The target with the highest TLS is

returned if it has the largest Delta and meets the TLS-Threshold.

Otherwise, “Unknown” is returned.

• A4 or Big D: (Forced) The target with the highest Delta score is

returned.

• A5 or D-Bound: (Not Forced) The target with the highest Delta is

returned if it meets the minimum Delta-Threshold. Otherwise,

“Unknown” is returned.

The output for each algorithm must be computed within the UIT. For each run, and

each algorithm, the tool must compute what is returned: an In-Library target or

“Unknown.” Other algorithms should be added for comparison in future studies.

Future algorithms may apply fusion techniques to either the scores or to the algorithm

solutions.

 Optional Parameters

 The data scores and five algorithms are given, but some parameters start

undefined. For instance, although the algorithms are given, the thresholds that

determine their outcomes are not. Also, the populations of each target in the

environment are not given. Finally, the costs for misidentifications are unknown and

may be difficult to obtain or difficult to agree upon.

 Thresholds are determined individually for each target, but they may not be

decided independently of the other targets. One suggestion is that a low, medium, and

high threshold for each target be allowed. Another is that Receiver Operating

Characteristic (ROC) curves be created that span possible thresholds. Alternatively,

 10

the end user could be allowed to dynamically adjust each threshold. Later in this

thesis, the use of dynamically responsive output to adjusted thresholds will be shown.

Target populations, called priors, in real-world situations may not be known

with certainty. For the purposes of this study, the user will be able to enter a

minimum, maximum, and most likely (median) number for the population of the target

to be encountered.

 Costs would be helpful in determining the best algorithm. By identifying a

cost with each misidentification, an expected cost can be created for each algorithm.

However, determining costs are subjective and can vary widely from one user to the

next. Thus, a cost matrix will not be the focus of this study, but research is included

for using one, provided all targets can be designated as, “Friend, “Target of the Day,”

“Other Hostile,” or “Neutral” and costs can be obtained.

Output

 The optimal output would be a list of algorithms from best to worst, if

algorithms could dominate each other. If each algorithm has unique tradeoffs, a

graphical depiction of these tradeoffs would be next best. However, tradeoffs are up to

the decision-maker, so the output at this stage of the tool is a meaningful representation

of the measures available. These include ROC curves, Classifier Evaluation

Quantifiers and a Cost Matrix. In addition, two new quantifiers and presentation

methods, Vertical ROC curves and Prior curves, are developed to answer questions the

previous methods could not. These will be discussed in later chapters, while the more

common methods will be briefly discussed next.

 ROC Curves

 A ROC curve is a curve commonly employed to compare the two types of

errors. Typically, a threshold is varied, and the True Positive is plotted against the

 11

False Positive (Albrecht, 2005:63; Hopley, 2006). True Positives and False Positives

will be discussed in Section III, Methodology. ROC curves are applied to tests with

only two outcomes: “TRUE” and “FALSE.”

 ROC curves were a suggested output, but they must be modified to account for

the unique nature of this study. First of all, some algorithms do not have thresholds

that can be varied. Without a threshold, they would simply form one point on the

ROC space. Also, more responses than “TRUE” and “FALSE” are possible and some

misidentifications are more costly than others. Furthermore, with “TRUE” being

different for each target being recognized, one ROC curve could be created from each

individual target. Finally, solutions depend on more than one score and more than one

threshold. One fixed score cannot represent reality due to this dependency, just as

lowering only one threshold cannot guarantee a response changing from “FALSE” to

“TRUE.” Since solutions depend on the values of every available threshold,

thresholds to generate a ROC curve should only be varied one at a time. The

dependency of the data will be shown in detail in Section III, Methodology.

Summary Data

In addition to ROC curves, summary data was suggested to provide classifier

evaluation quantifiers. These quantifiers – Precision, Recall, F-Value, Accuracy and

Mutual Information – will be examined in detail in Section II, Literature Review, and

Section III, Methodology. An example of this information is given in Table 2. As

with the ROC curve, these quantifiers must be modified for use in a multiple declaration

problem. We propose that this information be computed for reference, although it

should not be the primary quantifier due to how misleading some of these quantifiers

can be.

 12

Table 2. Classifier Evaluation Quantifiers.

Cost Matrix

A summary cost was also suggested. Originally a Cost Matrix was developed

based on the population data provided. This matrix is highly dependent on accurate

estimates of population and on cost. Estimates of population can follow a triangular

distribution with only the minimum, maximum, and most likely values being

speculated. Also, costs can be purely subjective. Thus, ROC curves, classifier

evaluation quantifiers – as well as alternatives such as Vertical ROC curves and Prior

curves to be introduced in Section III, Methodology – will be the quantifiers for

algorithm comparison in this study.

Research Objectives/Questions/Hypotheses

The objective of this research is to find a useful method for selecting the best

ATR algorithm available given a set format of data or for presenting meaningful

information for the decision-maker to make the selection. In addition, this research

will present an option to determine better parameters for the ATR Algorithms.

Research Focus

The primary focus of this research is to exploit the capabilities of Microsoft

Excel and Visual Basic to create a programmable method of generating visual

information from summary statistics on a given set of data. Although most of the

 13

information presented is computed from conditional probability, new methods have

been employed to present all the data. In addition, the research touches upon the

handling of “Unknown” responses, missing data, and multiple error calculations.

Some new techniques, the Vertical ROC curve and Prior curve, are developed to better

compare the differences between algorithms. It is suggested that linear programming

and fusion techniques be explored in future research to increase the effectiveness of this

tool.

Methodology

The UIT takes a set of data in a given format and processes it through MS

Excel using VBA code. Further parameters on the five algorithms and the current

operational environment are then asked for and entered by the user. Information is

presented visually throughout a number of MS Excel spreadsheets. Quantifiers and

graphs are generated on the spot. These include ROC curves, Vertical ROC curves,

Prior curves and Classifier Evaluation Quantifiers. The parameters for the five

algorithms and the current operational environment can then be changed to improve the

algorithm responses, to answer sensitivity questions or to meet future needs of the user.

Calculations and corresponding visual information on each sheet of the Excel file will

automatically update with new user inputs.

Assumptions/Limitations

The UIT was built using a set of data provided by the customer and many

assumptions are made from the sample data file. The UIT assumes that all following

data will be provided in the same format. Some specifics in format include placement

of the data in the data file and the location of In-Library targets in the heading. It is

assumed that the In-Library targets are listed in priority from left to right. It is

 14

assumed that a Clutter target designated “T1” will always be present. It is assumed

that Confusers will be identified with a name starting with “Con.”

Confusers are objects that may be mistaken for In-Library targets. The ATR

algorithms were tested against a large number of confusers. Unless otherwise stated,

the correct identification for confusers is assumed in this walkthrough to be “Clutter”

with “Unknown” also acceptable. In addition, a response of “Unknown” due to ties

and non-declarations will be synonymous with “Clutter.” This makes a major

difference in error calculations as “Unknown” responses are not only considered but are

counted as misidentifications for all non-clutter targets.

Priority is given in the UIT to the leftmost targets in the data file’s heading.

Thus, ties between targets are broken by returning the target highest in the priority list.

For example, if the columns in the data file have “Clutter,” “Tiger,” and “Bradley,”

listed from left to right, then ties involving “Clutter” returns “Clutter” while a tie

between returning “Tiger” or “Bradley” returns “Tiger.” Although a response of

“Non-Declaration” is arguably appropriate, assigning an actual target as a response

shows the algorithm met a declaration requirement for at least one target.

A primary assumption of the UIT is that all data sets will include “Clutter” as

an In-Library target and as the target with the highest priority. This allows “Forced”

algorithms to have “Unknown” as a valid declaration. This is appropriate as a large

number of the test samples are runs against confusers. Not allowing for “Clutter”

would put “Forced” algorithms at a distinct disadvantage in clutter heavy environments

which would make them impractical if this was not allowed.

 15

Implications

The UIT allows users to choose between multiple selection criteria and adjust

parameters as needed. Programmers are concerned with the probability a system

works properly. They are concerned with Horizontal Measures of Performance

(MOPs) or the probability of declarations given a state of the system. However,

operators are concerned about Vertical MOPs, the probability of a state of the system

given a declaration. Vertical MOPs can be poor even if the Horizontal MOPs are

good. This can occur when the probability of the state of the system, or priors, is close

to zero for the targets with the good Horizontal MOPs, and large for targets with poor

Horizontal MOPs. Multiple selection criteria allow effectiveness to be analyzed from

both perspectives. Although ROC curves can provide information on Horizontal

MOPs, the criteria developed in this UIT allows for Vertical MOPs to also be provided

in graphical form using a modified ROC curve referred to in this thesis as the Vertical

ROC curve. Since Vertical MOPs are very sensitive to priors, Prior curves are also

developed to answer what-if questions and perform sensitivity analysis. Vertical ROC

curves and Prior curves provide a unique look that is quick and meaningful to the

operator, but depend heavily on the operational environment.

Effectiveness of a system also varies with user-defined parameters. By

allowing a dynamic tool for analysis, the effects of changes to the environment will be

presented as soon as they are entered into the spreadsheet. Furthermore, sensitivity

analysis is made possible through these adjustments and by allowing a range of prior

probabilities to be entered.

 16

Preview

Research began by investigating which methods of fusion, summary statistics,

and information presentation could be used on the data provided. These methods are

outlined with recommendations for further study in the Section II, Literature Review.

Once methods were explored, the data provided was examined for possible

complications and implications.

Both the data and possible outputs for the data are examined in the Problem

Statement earlier in this section. Although problems such as missing data and tool

limitations have been identified in the Problem Statement, the section on Methodology,

Section III, provides information on each problem resolution and rationale as to why

assumptions are made using a comprehensive walkthrough. Output calculation is

discussed in depth in this section as well as the usefulness of each selection criteria.

New tools, the Vertical ROC curve and Priors curve, are introduced and modifications

to old tools, ROC curves and classifier evaluation quantifiers, are discussed as well in

this section.

Section IV, Results and Analysis interprets the findings of the UIT in a sample

analysis. Speculations are made and theories investigated throughout the section as if

made by someone using the tool. The general effectiveness and relevance of the tool

along with suggested future research is given in Section V, Discussion.

 17

II. Literature Review

Historical Perspective

A User Interface Tool (UIT) is needed to allow easy comparison between

Automatic Target Recognition (ATR) algorithms. Developing this tool required an

examination of research on classifiers, error, and decision-making processes. Also

researched was what mathematics is being applied to compare and select the best ATR

algorithm. Methods for ATR algorithm comparison and selection and how they can be

applied to the problem at hand were a primary interest in the literature review.

Error in Hypothesis Tests

Commonly, error is measured in hypothesis tests or tests to determine whether a

statement, the null hypothesis, should be rejected or should fail to be rejected. The

actual test is conducted on the alternate of the null hypothesis. Errors of two types are

typically reported. The first error is called a False Positive, Type I error, or Alpha

error, and it is the probability of rejecting the null hypothesis when the statement is true

(Hopley, 2006). The second error is called a False Negative, Type II error, or Beta

error and is the probability of not rejecting the null hypothesis when the alternate

hypothesis is true (Hopley, 2006).

For clarity, some definitions shall be tailored to make them more applicable to

the objective of this thesis. These definitions shall be defined within each chapter.

The null hypothesis in ATR is the statement a detected object is, in actuality, a

specific In-Library target. Not rejecting the null hypothesis implies the algorithm

identified the object as the In-Library target, so the symbol for that target will be

displayed for the end user. Not rejecting the null hypothesis implies accepting it as

truth as far as the end user, the pilot, is concerned. Thus, rather than using the phrase,

 18

“not rejecting,” the null hypothesis will either be accepted or rejected in this paper. A

special case in which “NON-DECLARATION” is also allowed as an alternative to

accepting or rejecting the hypothesis will be discussed further in the literature review

under the topic, “Error with ‘Unknown’ Allowed.”

As the null hypothesis will either be accepted or rejected, the case where it is

accepted will be referred to as returning the statement, “TRUE.” When it is rejected, it

will be referred to as returning the statement, “FALSE.” If the null hypothesis is true,

this analysis will refer to the state of the system as TRUE without quotes. If the

statement if false, the state of the system is FALSE. If the test is more specific – for

instance if the test is to determine if the object is a HOSTILE, NEUTRAL, or FRIEND

– the returning statement will be the classification label in quotes.

With these new definitions, an Alpha error is a declaration of “FALSE” when

the system is TRUE. A Beta error is a declaration of “TRUE” when the system is

FALSE. When the analysis becomes even more specific, the notional names of the

individual targets will be used instead of TRUE, FALSE, “TRUE,” and “FALSE.”

Receiver Operating Characteristic

A visual method typically used to display error is the Receiver Operating

Characteristic (ROC) curve (Albrecht, 2005:63). A ROC curve plots a test’s False

Positive value versus its True Positive, or the probability of returning “TRUE” when it

is TRUE, value (Albrecht, 2005:63). The ROC curve creates the plot by adjusting the

threshold in determining whether to reject it is “TRUE” or not. It plots both values at

multiple thresholds. ROC curves are useful in comparing many algorithms by

showing visually which one outperforms the other with better True Positive versus

False Positive rates. Figure 6 displays a ROC curve that compares three algorithms:

 19

Algorithm 1, Algorithm 2, and Algorithm 3. The further up and left the curve bends,

the better the algorithm (Simon, 2005). In this example, Algorithm 1 and Algorithm 2

are almost identical, and both outperform Algorithm 3. Algorithm 3 is only preferred

over the baseline where False Positives and True Positives have an equal tradeoff.

Figure 6. Receiver Operating Characteristic Curve comparing three algorithms.

Error in ATR Comparisons

Historical measures to compare the difference between ATR algorithms are

called Horizontal and Vertical Measures of Performance (MOPs) (Sadowski, 2006).

Horizontal MOPs are probabilities of declarations given a state of the system.

Horizontal MOPs are more of a concern to engineers and programmers as to whether a

decision algorithm is working properly and displaying the correct result. Typical

Horizontal MOPs include the probability:

• True Positive: a system outputs “TRUE” when its input is TRUE

• True Negative: a system outputs “FALSE” when its input is FALSE

• False Negative: a system outputs “FALSE” when its input is TRUE

 20

• False Negative: a system outputs “TRUE” when its input is FALSE (Hopley,

2006)

Vertical MOPs are probabilities of the state of the system given a declaration.

Vertical MOPs are more a concern to the user who sees the end result of an algorithm.

These MOPs measure whether or not the result is accurate. The probabilities in

Vertical MOPs rely on the total population of TRUE and FALSE system states.

Typical Vertical MOPs include the probability:

• Positive Predictive Value (PPV): the state of the system is indeed TRUE

when the display reads “TRUE” (Wikipedia, 2006)

• Negative Predictive Value (NPV): the state of the system is indeed FALSE

when the display reads “FALSE” (Wikipedia, 2006)

• the state of the system is actually FALSE when the display reads “TRUE”

• the state of the system is actually TRUE when the display reads “FALSE”

The difference between Horizontal and Vertical MOPs is readily found in the

ATR environment. For instance, consider the situation where a hostile object is

detected. An ATR algorithm will test whether or not the object is “HOSTILE.” In

this case, a return of “TRUE” indicates “HOSTILE” and a return of “FALSE” indicates

“FRIEND.” A programmer might prefer an algorithm that correctly identifies targets,

both friends and foes, eighty percent of the time. However, in an environment where

more HOSTILEs are encountered, an algorithm that is more likely to make mistakes in

favor of classifying any target as “HOSTILE” would be more accurate to the user.

This accuracy is because less of the abundant HOSTILEs will be classified as

“FRIEND.” A higher percentage of any FRIEND it encounters is misclassified as

“HOSTILE,” but less FRIENDs are encountered.

 21

By changing thresholds due to the probability of encountering a specific target

(also known as a prior probability or priori) (Albrecht, 2005:174) the Vertical MOPs

can improve, but the Horizontal MOPs will also change. However, prior probabilities

are difficult to obtain. Also, dangers can arise from changing an algorithm to meet one

measure of performance. These dangers and further comparisons of Horizontal and

Vertical MOPs are explored further in the literature review under the topic “Possible

Algorithm Performance Measures.”

Feature Determination

The classification process being researched in this study involves reporting a

decision from features. A feature is a measurement extracted from a set of data (Roli,

2002:10). In particular, the feature scored in this project is the “likeness” a detected

object is to any given target in the library. The “library” refers to the set of targets on

which the system has information. The “likeness” score is not the probability an

object is the target, but how “like” it is to the target. More specifically, it “refers to

estimates of target probability that are output from a target detection system under test

(SUT)” (Parker, 2006). A detected object has a “likeness” score, referred to in this

study as Target Likeness Score (TLS), computed for each target in the library, so each

run has a set of features calculated.

In the data provided, a library of five targets was given. It was not designated

whether each target was friend or foe. In fact, the first target, T1, is actually a general

“clutter” target (Sadowski, 2006) which is used to compare the detected object to a non-

target, like trees and bushes. The other targets were designated T2, T3, T4, and T5.

As stated in Section I, Introduction, for simplicity the names T1, T2, T3, T4 and T5 will

 22

be replaced with the more meaningful names of Clutter, Tiger, Panzer, T-72 and

Bradley respectively.

Features were computed during runs where an intended objected was detected.

Each run had the following information recorded: the actual object, details about the run

and a likeness score to each of the targets in the library. An example of two of these

runs and the computed scores for each target is provided below in Table 3.

Table 3. Four runs from the sample data file repeated from Table 1.

Decision Determination

Current algorithms make a decision based on the given features. The decision

is restricted to classifying the object as one of the targets in the library (IL), classifying

the object as something out of the library (OOL), or classifying it as a non-declaration.

A non-declaration indicates the target is a target and not clutter, but it cannot distinguish

which target it is.

Five algorithms are being considered to make a decision based on the features.

Each algorithm was referred to as A1 through A5, but given more meaningful names of

Biggest-TLS, TLS-Bound, TLS & D, Big D, and D-Bound, respectively. The

algorithms in Figure 6 do not correspond with these algorithms. The algorithms are

defined as (Sadowski, 2006):

• Biggest-TLS (A1): Return the In-Library target with the highest TLS for

that run.

 23

• TLS-Bound (A2): If a run’s biggest TLS is greater than a specified

amount called the minimum TLS-threshold for that target, then return that

target. Otherwise return “Unknown.”

• TLS & D (A3): Compute the Delta score for each target. The Delta is

equal to the TLS for that target minus the specified minimum TLS-

threshold for the target. If the Delta is negative, return “Unknown”. If

the highest TLS is greater than the minimum TLS-threshold and the Delta

for that feature is greater than the Delta for all other features, return that

target. Otherwise return “Unknown.”

• Big D (A4): Compute the Delta score for each target. Return the In-

Library target with the highest Delta score for that run.

• D-Bound (A5): Compute the Delta score for each feature. If the highest

Delta score is greater than the Delta score for all other features by a

specified minimum Delta-threshold, return that target. Otherwise return

“Unknown.”

Biggest-TLS (A1) and Big-D (A4) are “Forced” to return an In-Library target

once it detects an object. The other algorithms are allowed to return “Unknown” so

they are “not forced” (Sadowski, 2006). In environments with excessive amount of

clutter that will be detected and considered for classification but will be found not in the

library (NIL), the “forced” algorithms are more likely to perform poorly, since they

must classify any detected object as one of the targets. To help rectify this situation,

one of the targets, T1, is a clutter target (Sadowski, 2006). T1 does not represent a real

target. Instead it represents common clutter in the area. If an object is classified as

“T1,” no symbol will be displayed as the object will be identified as Clutter (Sadowski,

2006). Including T1 reduces the error of “Forced” algorithms, but it cannot reduce all

of the error since different clutter objects may not have similar features.

 24

User-Defined Input Variables

More information is required before a decision can be made and error

measured. The first missing information is the threshold levels. “Likeness”

threshold levels, or TLS-thresholds, are required before both TLS-Bound (A2) and TLS

& D (A3) can compute a decision. The TLS-threshold is also used to calculate Delta

scores, as a Delta score is the difference between a target’s TLS and TLS-threshold. A

Delta-threshold is required for D-Bound (A5). These thresholds are similar to those

used in the ROC curve, as decreasing the threshold allows for more True Positives but

results in more False Positives.

One approach would be to vary thresholds in levels – low, medium, and high –

depending on the likelihood of having clutter in any given image (Sadowski, 2006).

Another would be to vary thresholds based on costs for misidentification. This method

is further examined later in the literature review under the topic “Fusion Comparisons.”

Thresholds can also be based on historical data or a training sample of test runs.

Other missing information includes estimated populations of the targets, or an

estimated distribution of the population of the targets, and costs for misclassifications.

This information is missing because in a region with military actions, these values can

constantly change. The sponsor requested an ATR UIT which allows the user to

define these values. For the UIT, the user-defined variables shall be:

• Operating points or levels of thresholds

• Scenarios or levels of clutter

• Prior populations or probability of encountering each target.

 25

Follow-on projects may expand the scope of user-defined parameters. For

example, in the future, a user may want to define alternate algorithms using more

parameters for comparison. Other user-defined parameters could include weights, or

costs, of correct and incorrect classifications.

Application of Historical Perspective

Most of the historical techniques can be applied with some alterations to the

ATR UIT project at hand. With five targets rather than TRUE and FALSE, the error

tests do not seem applicable. With more than two classifiers, ROC curves can also be

difficult or impossible. However, if the targets are converted from the labels “T1,”

“T2,” “T3,” “T4,” and “T5” to an alternate label of “HOSTILE” or “FRIEND,” the error

tests and ROC curves can be applied. In addition, it will be shown that adding

“Unknown” as a class still allows ROC curves to be used (Albrecht, 2005).

Alternatively, each target’s ROC curve can be plotted individually. To measure both

Vertical and Horizontal MOPs, a modified ROC curve called a Vertical ROC curve

shall be applied in this project. A Vertical ROC curve is developed by applying some

principles of the ROC curve to Vertical MOPs rather than Horizontal MOPs.

 The current way of computing features and decisions are useful but may be

improved upon. Features currently provide one-look per test run. Follow-on

research may be accomplished to allow multiple sensor looks and use sensor, data, and

time-series fusion to compute features. Fusion might provide more distinct features

scores by using information from the other features to compute the score. Decision

computation can be improved through the use of feature fusion and decision fusion.

For this study, however, analysis is limited to only the data provided.

 26

Possible Algorithm Performance Measures

 Another concern in selecting the best algorithm is how to prove it is the best

algorithm. To compare algorithms, an appropriate evaluation quantifier should be

chosen.

According to a study conducted by Hanna M. Wallach at the University of

Combridge, classifiers can be compared using Accuracy, Precision, Recall, F-score and

Mutual Information (Wallach, 2004). Accuracy can be defined as the combined

probability of True Positives and True Negatives. Precision is another name for

Vertical MOPs. Recall is another name for Horizontal MOPs. An F-Score is a

“harmonic mean” between the two whereas mutual information, “is defined as the

Kullback-Leibler divergence between the joint distribution of <output> y and <truth> t

and the product of their marginals:” (Wallach, 2004)

(,)

(:) ((,) || () ()) (,) log
() ()y t

P y t
I y t D P y t P y P t P y t

P y P t
= =∑∑ (1)

Wallach compares three models to determine which quantifier is the best.

Based on her study, Accuracy, Precision, Recall and F-Score can be misleading. An

example of this is when ninety percent of the objects in a Region of Interest (ROI) are

the target T2. Then, any algorithm that simply labels all detected objects as “T2” will

have ninety percent accuracy, ninety percent precision, high Recall and high F-Score.

However, the algorithm is completely dependent upon the population of T2, so it

provides little useful information. Rather than these classifier quantifiers, Wallach

suggests using Mutual Information and then the other classifier quantifiers.

 27

Alterations are necessary to apply this research to a scenario with six classes:

“T1,” “T2,” “T3,” “T4,” “T5,” and “U.” Precision and Recall could be calculated for

each individual class. From these values, F-Score can be calculated for each class. A

report can show individual, average or the sum of these values. The sum of these

values for the algorithms and test data are shown in Table 4.

Table 4. Classifier Evaluation Quantifiers.

Error Exploration

 Measuring error also changes with multiple class labels. Error with two class

labels and an “Unknown” class label can be considered as a three-class system. Error

for an unlimited number of targets can be refined into a smaller system by reclassifying

each target as one of a limited number of labels. Alternatively, the error for each target

can be considered separately. Each of these methods for dealing with error is

considered in this study.

 Error with “Unknown” Allowed

 Allowing an “Unknown” label can be both helpful and harmful. “Unknown”

can be defined as two different situations. One situation is where the detected objected

is not like any target in the library. This is the case where the detected object is most

likely an Out-of-Library (OOL) confuser or Clutter. However, “Unknown” can also

occur if a detected object is equally like two targets in a library. This case can be

 28

referred to as a “NON-DECLARATION,” where the detected object is found to be a

target in the library, but the algorithm is uncertain which one. Possible ways to deal

with a “NON-DECLARATION” is to display a symbol that toggles between the two In-

Library targets or to display “Unknown.” In the case where, “Unknown” is decided to

be an OOL confuser, the system can display no symbol.

 In the case where detected objects are always in the library, “Unknown” can

significantly change the determination of True Positives and True Negatives.

“Unknown” signifies a level of confidence is needed to make a final decision. On one

hand, it is not incorrect to call an object “Unknown.” Thus, if these classifications are

taken out of the calculation, values for False Positives and False Negatives decrease.

However, both values for error would be zero if all objects could be declared as

“Unknown,” but no correct identifications would be made. Since “Unknown” is also

not correct, a penalty could be assessed to these declarations to limit its use. Finally,

since declaring an object as “Unknown” might be like declaring the target as “Clutter,”

it is reasonable to treat “Unknown” as just another target. Each of these methods of

resolving “Unknown” have their own pros and cons.

 Alternatively, a three-dimensional ROC curve could be constructed. A two-

dimensional ROC curve would plot True Positives versus False Positives. A three-

dimensional ROC curve could add a third axis showing percent of declaration

(Albrecht, 2005). Such a plot would show how the ROC curve changes as the

confidence needed to make a declaration increases. An example of such a plot is

shown in Figure 7.

 29

Figure 7. Surface plot of ROC Curve. (Albrecht, 2005:98)

 The surface plot shows changes over different percent declarations. The

percent of False Positives decrease as declarations are not forced. Alternatively, the

percent of True Positives increase until the percent of declarations is zero. This plot is

useful in showing the impact of increasing thresholds to the decision between two

classifications.

Error with Multiple Classifications

Although three-dimensional ROC curves are useful if only two classifications

other than “Unknown” are possible, the sample of interest contains six classifications

from five algorithms. Future data could have a larger number of targets in the library.

Providing a surface plot for each algorithm and each target would not provide a straight-

forward, visual selection process for the user. A method of handling multiple classes

needed to be explored.

 30

Suggested from a study conducted by Timothy W. Albrecht, Major, USAF at

the Air Force Institute of Technology, one method could involve categorizing each

target as one of a limited number of labels (Albrecht, 2005). Rather than comparing

each individual target, an appropriate label indicating the meaning of the target can be

used. Thus, rather than a list of targets, targets could be labeled under the appropriate

category:

• Target of Day (TOD) : the hostile target of interest (Albrecht, 205:98)

• Other Hostile (OH) : targets that are hostile but not of interest

• Friend (F) : an allied target

• Neutral (N) : a target that is neither friend nor hostile

• Out-of-Library (OOL) : An unidentified confuser, or clutter

• Non-Declaration (Non-Dec) : An ambiguous target

• Unknown (U) : Either OOL or Non-Dec

Using categories fixes a maximum number of labels to be studied regardless of

library size, possibly reducing the number of cost calculations. Cost calculations result

from each correct and incorrect label having separate costs, and different incorrect

labels can vary widely in costs. For example, if the target detected is a T3, then “T2”

and “T4” are incorrect labels. If T2 and T3 represent friends while T4 is a hostile,

declaring T3 as “T2” declares a friend incorrectly as a different “Friend,” while

declaring T3 as “T4” declares a friend incorrectly as “Hostile.” Both results are

incorrect, but the second cost could be much higher. Rather than setting a cost for all

target combinations, placing targets in categories can reduce the calculations in the

above example to the cost of misidentifying a friendly target as any friendly target

versus identifying a friendly target as any hostile target. In such a way, cost

 31

calculations can be reduced to five outcomes listed below and represented in a

confusion matrix in Table 5. (Albrecht, 2005)

• Correct Label : Making the correct classification

• Critical Error : Classifying F or N as “TOD” or “OH” and classifying

TOD or OH as “F” or “N” (Albrecht, 205:98)

• Non-Critical Error : Classifying TOD as “OH” and classifying OH as

“TOD” and classifying U as “OH” or “TOD” (Albrecht, 205:97)

• Lessor Error : Classifying F or N as “U” and classifying U as “F” or

“N” (Albrecht, 205:98)

• Non-Declaration : Classifying any target as “NON-DEC” (Albrecht,

205:97)

Table 5. Cost Confusion Matrix.

Although OOL misidentification costs might depend on the OOL target, this set

of outcomes provides an alternative for reporting cost. A cost could be assigned to

each outcome and calculated or the probability of each of these outcomes could be

reported. Thus, categorizing targets into these labels can allow for a limit to the

number of truths and declarations to be analyzed regardless of library size and provides

an easier way to calculate costs to compare and ultimately select algorithms.

 32

Although useful for systems dealing with many targets, the sample data had

only five targets. Costs and categorization would require additional user input. This

study shall leave the question of costs up to future research.

Decision-Making Process

 To select the best algorithm, the five suggested algorithms can be compared or

a new algorithm can be offered. A new algorithm could use the raw data or any of the

five algorithms’ decisions as information to make its decision. To determine the best

way to do make this decision, fusion and sampling was researched.

 Multiple Classifier Systems

According to a tutorial created by Professor Fabio Roli at the University of

Cagliari, the decision-making process can be broken into fusion steps: sensor fusion,

data fusion, feature fusion, and decision fusion (Roli, 2002:28). Roli’s work begins

with sensor fusion and selecting the most appropriate classifiers using sensing,

segmentation, and feature extraction. Unfortunately, the data provided for use in this

thesis is a one-look set of scores already calculated from each run, so sensor fusion and

data fusion is not in the scope of this project, but could be explored in follow-on

research. However, classification and post processing, accounting for costs of errors,

can be useful in deriving a better algorithm.

According to one expert, Hidden Markov Models (HMM) is another pre-feature

fusion model that can improve Combat Target Identification (Albrecht, 2005:152).

This system uses a time-series classifier design method to compare observations to a

hidden state space before making a decision or a decision vector of confidence levels.

This method could be highly useful in determining the correct classification.

Unfortunately, using this method is outside the scope of this project since it requires

 33

multiple sensor observations and is conducted before feature scores are determined.

Roli’s work also involves selecting the appropriate decision boundary based on

disciminant scores. Applying decision boundary calculations to training data could be

useful in computing the most effective thresholds for an algorithm.

Decision fusion is typically accomplished through ensemble Multiple Classifier

Systems (MCS), but it can also include modular MCS (Roli, 2002:48). Ensemble

MCS compares the decision, task solution, alternative algorithms make. Modular

MCS when incorporated with ensemble MCS instead compares the entire decision

vectors – not only an algorithm’s first choice, but the second choice, third choice, …,

last choice as well – from each algorithm to compute the best decision. Using this

method, classifications could be eliminated serially or conditionally from consideration

(Roli, 2002:29). Then, a voting technique could be used on the remaining

classifications, as in ensemble MCS, or ranks and confidences assigned to the list of

possible classifications. The hybrid ensemble/modular MCS method could be applied

to the provided algorithms to make a better decision.

According to one expert, the use of ensemble MCS is dependent on

complementary classifiers and error diversity (Roli, 2002). Complementary classifier

means each classifier makes different classification errors. The provided algorithms

being used are similar in how either the “likeness” score or the “Delta” score is used, so

complementary classification is not valid at the decision level. Some of the algorithms

are so similar that they simply add “Unknown” to the decision vector of a previous

algorithm. Still the concept behind complementary classifiers may still be applied to

the “likeness” and “Delta” scores the algorithms use.

 34

With the restrictions on classifiers, methods for classifier ensemble design are

restricted, but some of the principles can still be used for creating training sets.

Training sets can be used to develop thresholds for the algorithms. Data-splitting,

bootstrapping, and bagging are three common methods for training data manipulation

(Roli, 2002:72). Data-splitting divides training sets into disjoint subsets.

Bootstrapping allows random samples to be drawn from the training set with

replacement. Bagging uses bootstrapping to create training sets of equal size.

Training sets can create weights on features. A technique called Ada Boost describes

creating weights for different training sets, then updating them based on misclassified

patterns (Roli, 2002:70). Noise injection can be used when the sample size is smaller

than the feature space, but with five likeness features, this is not an issue for this project.

Fusion Comparisons

A study was conducted at the Air Force Institute of Technology to compare

techniques for decision level fusion, feature level fusion, and an intermediate level of

fusion (Leap, et al.)

The decision level fusion, Identification System Operating Characteristic

(ISOC), could be applied to the ATR project. ISOC can be applied to multiple

classifiers and multiple output states. It uses conditional probabilities, rule selection,

and costs to determine the best decision rule.

Another decision level fusion is the ROC Fusion (Leap, et al.). It begins with

a training set and uses a test set to generate ROC curves of each classifier. From these

ROC curves, an optimal threshold is determined. Based on these thresholds, a third set

is tested to produce a final ROC curve. This method, however, may be more

appropriate for systems with fewer output states.

 35

An intermediate level fusion is given by a Probabilistic Neural Network (PNN)

(Leap, et al.). PNN uses posterior probabilities as features. The feature level fusion

is given by One Big Network (OBN). OBN fuses features in a Generalized Regression

Neural Network (GRNN).

The study conducted by four experts showed that although fusion might not

yield better accuracy, it can reduce miscalculations due to poor classifiers (Leap, et al.).

In their study, the feature level fusion outperformed the other three types of fusion.

Thus, GRNN may be a likely candidate for a good fusion model alternative to the

provided algorithms. It must be kept in mind, as one expert noted, that the choice of

models is not made on effectiveness alone but also on model complexity (Albrecht,

2005). The more complex the model, the more inefficient the algorithm may be for the

system to provide timely information to the user.

 36

III. Methodology

Input

The customer provided a list of scores in an MS Excel spreadsheet, suggested

five possible algorithms, and asked for a way to compare all algorithms visually to

determine which is best. The sample data file, entitled “AFIT_ATR_result_file.xls,”

contained information on 3893 experimentation runs and a sample of it is shown in

Table 6. This table shows the same sample from previous sections.

Table 6. Four runs from the sample data.

Each run has seven columns of information. The first is “File_Name,” which

provides information about the run itself. The second is “Actual,” which shows what

target was actually being examined during the run. The final columns are scores of

either “#NAME?” or a value that ranges between 0 and 1. The value measures how

like the actual target is to each of five targets – T1, T2, T3, T4, and T5 – currently in the

library. The other response of “#NAME?” is returned when a system error in

evaluating the actual target occurs. Samples that include the “#NAME?” response are

given in Table 7.

 37

Table 7. Sample Scores (Features) with invalid entries.

The responses in the “Actual” category include four In-Library targets – T1, T2,

T3, and T4 – as well as eleven confusers, Con1 through Con11. T1 is missing from

the list of possible Actual targets, because T1 exists only as Clutter. That is, T1 is an

In-Library list of properties with general target characteristics created for the sole

purpose of allowing a target to be classified as “Clutter” (Sadowski, 2005). T1 can

resemble a tree or a bush or a more general fuzz ball. Thus, if any target is declared as

a “T1,” then the target is declared as “Clutter” and is not displayed for the user. This

allows algorithms with a forced declaration to still declare a target as “Out-Of-Library

(OOL).”

The eleven confusers are synonymous with Clutter. They can be other

vehicles that are likely to be encountered and considered targets by the identification

 38

system. Unless otherwise stated, the correct identification for confusers is assumed in

this walkthrough to be “Clutter” with “Unknown” also acceptable.

For clarification purposes, meaningful names are added to the five targets for

the purposes of this walkthrough. T1 will be identified as, “Clutter.” T2 will be

considered the Target of Day (TOD) and identified as, “Tiger.” T3 will be considered

an Other Hostile (OH) target and identified as, “Panzer.” T4 will be considered a

Friendly (F) and identified as, “T-72.” T5 will be considered a Friendly (F) and

identified as, “Bradley.”

For simplicity, the scores will be referred to as Target Likeness Scores (TLS) as

discussed in the previous sections. This shall prevent confusion with Discriminant

Scores, since the tool shall not have knowledge as to how these scores, as well as future

scores, are generated. This shall also prevent confusing these scores with Likelihoods.

Input Sheet Solutions

Along with the problem of invalid responses, the data file provided has other

possible problems that must be resolved.

First of all, although it is easy to find any invalid responses visually, it is

difficult for a macro to identify invalid responses. To identify invalid data, Excel

displays “#NAME?” in the cell. However, this value is neither a number nor text as it

is invalid. Thus numerical and text search criteria are unreliable. Instead, it is

suggested that these entries be found manually by visually inspecting the data before the

analysis. By manually examining the data for invalid entries, the reason why the data

is invalid in the first place can be explored, allowing a better determination of how

invalid data should be handled.

 39

Different methods, each with their pros and cons, exist for resolving missing

data problems. Two suggestions are either that a value is entered or the row be

deleted. Deleting the row will allow for an analysis on only valid runs, but it may

ignore a serious defect in the identification system that causes invalid returns and

missing data. It can also hurt smaller data sets by deleting possible information.

Alternatively, a substitute value may be entered in place of the invalid value. Possible

substitute values are -1, 0, or the average response for the system from the data.

Entering a negative one ensures no algorithm will choose the corresponding declaration

as a response, but it will cause difficulties in creating scores later in the analysis.

Entering a zero may still allow the forced algorithm using Delta scores to return the

corresponding response if all other values are significantly below their minimum TLS-

threshold. Allowing the average response to be entered allows the corresponding

target declaration to still be considered, but it also makes the value of this run dependent

on all other runs in the data set. This could be problematic in small-sized data sets.

In our sample data with over 3000 runs, the average response will be used.

With TLS scores precise only to the third decimal point, ties can occur and do

occur. Some algorithms base their response on the largest TLS score. If a tie occurs,

there is no defined way to break the tie. Possible returns include “Unknown” or one of

the In-Library targets. As stated earlier, “Unknown” can be interpreted as “Out-Of-

Library” or “Non-Declaration.” In this case, “Out-Of-Library” may not be appropriate

if the TLS scores are high or very appropriate if TLS scores are low. “Non-

Declaration” is more appropriate, because the algorithm cannot choose between two

valid returns. However, returning “Unknown” confuses whether it is due to a tie or

due to low likeness scores. Instead, the User Interface Tool shall break the tie by using

 40

the order targets are listed in the library. The earlier a target is in the order, the higher

priority it will receive. In our sample data file, the targets are listed: “Clutter,”

“Tiger,” “Panzer,” “T-72,” and “Bradley.” Thus, a tie between “Clutter” and “Panzer”

will be resolved as “Clutter.”

Finally, although the list of In-Library targets is readily apparent and available,

the list of Out-Of-Library targets is not. A list of Out-Of-Library, or Actual in the case

of a data file, can be compiled manually, however in a real test these could be unknown.

Currently, the UIT handles the list of Actual and the list of In-Library targets as follows:

• All targets identified as confusers in the list of Actual targets will

begin with the string “Con.”

• “Clutter” will be an appropriate response for a confuser target

• “Clutter” will be the first item in the In-Library target list

Identifying all confusers with “Con” should not cause any problems. Since

“Clutter” is equivalent to “Unknown” and confusers are Out-Of-Library, classifying a

“Clutter” response for each confuser is appropriate. The third condition, however,

assumes all target identification systems will have “Clutter” in their libraries and will

give this response priority. This may not be true in all cases, so a better solution for

this problem should be found in later updates to the UIT.

Master Worksheet

The User Interface Tool (UIT) has size limits, so a tool that identifies these

limits and spawns other spreadsheets for analysis is most likely necessary. One way to

accomplish this is to allow for a spreadsheet that can read in data and spawn another

 41

spreadsheet with the requested information. The current master spreadsheet has a user

interface button that allows for a spreadsheet to be opened from the tool. The interface

is shown in Figure 8.

Figure 8. Interface panel for opening a spreadsheet to be analyzed.

Before the analysis can be started, the user must enter more information about

the data. Information regarding the five suggested algorithms must be obtained.

Further information on the populations of the possible targets must also be entered.

Additional information on the orientation of the targets – for instance, whether a

specific target is hostile, friendly, or neutral – would help but is not necessary at this

stage of the tool. Costs may also be wanted, but shall not be used at this time. To

enter these parameters, an understanding must be reached on the five algorithms

suggested. These algorithms shall be covered in the following section.

User-Defined Parameters

Five algorithms were suggested by the customer. These algorithms were

defined earlier as follows:

• A1: (Forced) The target with the highest TLS is returned

• A2: (Not Forced) The target with the highest TLS is returned if it

meets the minimum TLS-threshold. Otherwise, “Unknown” is

returned.

 42

• A3: (Not Forced) The target with the highest TLS is returned if it has

the largest Delta and meets the minimum TLS- threshold. Otherwise,

“Unknown” is returned.

• A4: (Forced) The target with the highest Delta score is returned

• A5: (Not Forced) The target with the highest Delta is returned if it

meets the minimum Delta threshold. Otherwise, “Unknown” is

returned.

As stated in previous sections, for clarity each algorithm will be given a more

meaningful name. The return for each algorithm is still which In-Library target –

Clutter, Panzer, Tiger, T-72 or Bradley – the algorithm chooses. The Unforced

algorithms are allowed to return an “Unknown” whereas the Forced algorithms use

“Clutter” to designate unknown. The names for each algorithm as well as how the

return is generated are rewritten below.

• A1: “Biggest-TLS.” Highest TLS.

• A2: “TLS-Bound.” Highest TLS, if it meets the TLS threshold.

• A3: “TLS & D.” Highest TLS, if it has the highest Delta and meets

the TLS-threshold.

• A4: “Big D.” Highest Delta.

• A5: “D-Bound.” Highest Delta if it exceeds the next highest Delta

by the target’s Delta-threshold.

For each run, the return from each algorithm should resemble what is shown in

Table 8 which shows what was actually being run against and which In-Library target

each algorithm would have returned.

 43

Table 8. Algorithm responses to the run data for a set of parameters.

The information present in the table is examined next. Table 8 shows

Biggest_TLS and Big_D always return a target, as “U” is never shown in either of these

algorithm’s columns. Also, Run 2 has each algorithm correctly identifying a T2

(Panzer) as a “T2” (“Panzer”). Run 1 is against confuser number 1 (Con1) and Run 3

is against confuser number 2 (Con2). Although each algorithm in Run 3 identifies the

confuser as “T1” (“Clutter”), it is considered correct as “Clutter” is appropriate in this

walkthrough to identify Out-Of-Library. Likewise, Run 1 has four algorithms that

identify the confuser as either “Unknown” or “Clutter.” This walkthrough counts all

four of these responses correct, since the confuser is Out-Of-Library.

It is mentioned that the algorithm responses are based on a given set of

parameters. These parameters are found in the descriptions of each algorithm as the

minimum threshold for TLS and as the minimum threshold for Delta. These values are

not provided with the data file, and they can vary as needed. Thus, these values should

be entered each time an analysis must be accomplished. Figure 9 and Figure 10 show

how these values shall be entered. Once they are entered, the button “Done Entering

Thresholds” may be pressed to spawn another MS Excel workbook with all the

worksheets needed for the UIT.

 44

Figure 9. User-Defined Parameters Blank Sheet.

Figure 10. User-Defined Parameters Filled-in.

Although the objective is to find the best algorithm, each algorithm depends on

the user-defined parameters. Essentially, this means each algorithm can be further

improved or worsened by adjusting thresholds. Rather than just choosing the best

algorithm of the five, the best solution should select a good algorithm and the best

parameters for that algorithm.

Unfortunately, algorithms might be sensitive to not just one but all parameters.

This is best shown using an example run. In the example, the TLS for “Clutter” is 0.7,

the TLS for “Tiger” is 0.69 and the TLS response for every other target is 0.65. The

TLS-threshold for each target will be 0.60. The Delta score is the difference between

the TLS and the TLS-threshold. This case is shown in Table 9. We will also use

 45

Delta-thresholds of 0.01. In this first case, “Clutter” would be the best response for all

algorithms.

Table 9. An example run for TLS-thresholds.

As the environment changes, the TLS-thresholds may be redefined. For

example, if clutter is unlikely, the user may redefine the TLS-threshold on Clutter to be

higher. In case 2, the TLS-threshold is increased to 0.75. The new Delta scores are

shown in Table 10.

Table 10. Second TLS-threshold case.

In this case, “Unknown” is returned on two algorithms since the target with the

highest TLS, “Clutter” does not meet the TLS-threshold. However, now “Panzer” has

the biggest Delta, so the fourth algorithm returns “Panzer.” In addition, for the D-

Bound algorithm, the highest Delta value must exceed the Delta-threshold or

“Unknown” is returned. “Panzer’s” Delta of 0.09 exceeds the Delta-threshold of .01

set earlier, so “Panzer” is returned for the last algorithm as well.

Another case occurs if the TLS-threshold for a different target is lowered

instead. In this case, shown as Case 3 in Table 11, the TLS-threshold for Bradleys is

lowered to 0.4. This could happen if it is known that “Bradley” returns tend to be

lower from the identification routine. In this case, “Bradley” would be returned for the

 46

last two algorithms and “Unknown” is returned instead of “Clutter” for the third

algorithm.

Table 11. Case 3 of TLS-Thresholds.

Switching any one threshold, in this example, the TLS-threshold on “Clutter”

from 0.6 to 0.75 or the TLS-threshold on “Bradley” from 0.6 to 0.4, can cause multiple

changes in all algorithm returns. Although this example may seem unlikely, some of

the test runs already encountered had similar results. For instance, Test Run #420 of

the sample data had the results shown in Table 12.

Table 12. Test Run #420 results.

In this case, the return values for “Clutter,” “Tiger” and “Bradley” are 0.689 or

0.69. The correct return of “Panzer” only has a TLS of 0.648, so TLS-based

algorithms would have to choose between three wrong choices with “Tiger” only

edging the other two out by 0.001. The determination of Delta-based algorithms,

however, depends not only on the TLS-threshold for “Panzer,” but on all thresholds.

For example, the TLS-thresholds, like those chosen in Table 13, would make four of

five Delta scores even.

 47

Table 13. Run #420 with TLS-thresholds altered and Delta scores calculated.

The sensitivity of each algorithm to not just one threshold but to each threshold

shows that target declaration is dependent on multiple parameters. Varying just one

threshold may not cause a change from a correct identification to a misidentification,

but possibly a misidentification to another misidentification or to a declaration of

“Unknown.” This topic will be further reviewed in the section on ROC curves.

Algorithm Calculations

Sensitivity to thresholds shows a need to be able to adjust the calculations in the

UIT to varying thresholds. With User-Defined parameters being uncertain and

flexible, the UIT should be able to handle a robust range of thresholds. Having a static

analysis where a button is pressed and results were calculated for one set of user-defined

parameters was impractical. However, a dynamic system, where all results could

change as a user enters new parameters would allow the user to see changes as they

were made.

To create a dynamic system, all calculations are made by reference. In MS

Excel, using active references and formulas rather than values resulting from VBA

macros allows calculations to be updated as any information changes. Calculations

would have to be broken down into a way allowing VBA to generate solutions only

through references. To accomplish this, each algorithm is broken down into necessary

elements that would use references and yet still be easy for a macro to form. The first

necessary elements are Delta scores.

 48

A Delta score, as shown in our previous example, is the difference between the

TLS score and the TLS-threshold. For our sample data, the TLS-thresholds used are

given in Figure 10. In Figure 11, these same values will be placed above the target

declarations in which they correspond. The Delta-thresholds were also given in Figure

10. In Figure 11, they also reside above the Delta values in which they correspond.

In the figure, D1 through D5 refer to the Delta scores of the five targets. These names

are generic, since they shall be created by the VBA macro.

Figure 11. Placement of data for algorithm calculations.

To create the Delta values, the macro need only reference any value given in

the data and subtract the TLS-threshold. By placing the TLS-thresholds above the

target names, any value need only subtract its value from a number always in the same

row of its column. Delta scores are then easily created with two references as long as

the data and the TLS-thresholds are valid. Whereas a TLS ranges from zero to one,

Delta scores can range from negative one to one. A negative one can occur when the

TLS is zero and the TLS-threshold is one. This case is unlikely, but possible.

The TLS-thresholds above the target names are not values but references.

They reference threshold values that have been recreated on another worksheet entitled,

“Algorithms.” The “Algorithms” worksheet is intended for the user’s main point of

interface. It includes Vertical and Horizontal statistics and their corresponding ROC

curves. Placing the thresholds on this page allows the user to enter new thresholds and

see the end results. All calculation worksheets have references to the values on this

 49

page. A snapshot of this page is included as Figure 11. A close-up picture of the

area to change user-defined parameters is shown in Figure 12.

Figure 12. Snapshot of the entire “Algorithms” worksheet.

Figure 13. Area for user to change user-defined parameters.

User-defined input is changeable, so other worksheets reference these values

from the “Algorithm” worksheet for their calculations. User-defined values are

entered in white cells to indicate a user can change these values as desired. These

values are Priors, TLS-Thresholds, and Delta-Thresholds. The Priors are not

probabilities but the number of units expected to be encountered in the given operating

 50

environment. The probabilities from these populations are calculated in grey next to

the white boxes. The values in grey are calculations references to or referenced by

other pages and should not be manually changed. If the values are manually changed

by mistake, it is suggested that the file be spawned again from the master spreadsheet.

The Priors are entered as populations, but prior probabilities are needed for

actual calculations. Three probabilities are calculated: Max, Likely, and Min. Likely

is calculated by adding the Likely populations of all targets. Then, the target’s Likely

population is divided by the sum to give the probability of when a target is encountered,

it is that target. The Max probability uses the sum of the maximum population of a

target and the minimum populations of each of the other targets. Then, the maximum

population is divided by this sum. The result is the maximum probability possible for

encountering that target when a target is encountered. A similar calculation is used for

Min.

Populations are originally used rather than probabilities for two reasons. First,

the sum of all Likely probabilities must add to one. Rather than error checking, a

formula ensures these probabilities add to one. Max and Min do not follow this rule,

since each of these probabilities use different sets of populations. Finally, estimating

number of units remaining should be easier than estimating probabilities. The priors in

Figure 13 could come from a decision-maker estimating that at the very least 10 Panzers

are left in the operational environment or at the very least it should be 3.4483% likely to

encounter a Panzer when a target is encountered. The first case seems easier to

estimate.

Next, maximum values must be calculated. By referencing a row of TLS

scores, the maximum TLS can be found. Similarly, a maximum Delta score is found

 51

for all Delta values in each row. Once these are determined, algorithm responses for

Biggest-TLS and Big-D are if-statements using the maximum value as criteria and

finding which column has that value. Using the run example used in Table 12 and the

actual thresholds, the Biggest-TLS and Big-D responses were calculated similar to the

way shown in Table 14 and Table 15 respectively. In the case of a tie, as stated in the

assumptions, the first target encountered in the tie has priority and will be returned.

Table 14. Biggest-TLS Calculation.

Table 15. Biggest-D Calculation.

The algorithms, TLS-Bound and D-Bound should return either that same

response as Biggest-TLS and Big-D, respectively, or they should return “Unknown” if

the TLS-threshold or Delta-threshold is not met. However, which of the thresholds to

use is not readily apparent at this point, since the threshold is in a column determined by

the solution to the previous two algorithms. Thus, these algorithms must use the

information determined previously in order to be calculated. For example, TLS-Bound

should use the threshold in the column with “Tiger,” and D-Bound should use the

threshold in the column with “Clutter.” If the user enters new thresholds, the solutions

to the previous algorithms could change, in turn, changing which column to be used.

Thus, a long if-statement reference is required to keep the spreadsheet dynamic. The

if-statement chooses a column based on the response to the previous solution. Since

the previous solution is dynamic, these solutions remain dynamic.

 52

To compute the final algorithm, “TLS & D,” another piece of information is

necessary. “TLS & D” returns the same response as TLS-Bound as long as the target

being declared has the largest Delta as well as the largest TLS. This can be determined

in one of two ways. One way is to calculate the Delta of the highest TLS value and

compare it to the maximum Delta. The other is to compare the results of TLS-Bound

with Big-D, and if they match, declare the same response. Although the second

method is easier, it can fail in cases of a tie. Ties are broken based on priority, but if a

lower priority target has a higher TLS and an equal Delta with a higher priority target,

“TLS & D” should still declare that target the response rather than “Unknown.” Thus,

the Delta of the highest TLS-scoring category is added as another column entitled

“Delta” for the Delta of the current choice. The “TLS & D” response for the example

is shown in Table 16.

Table 16. “TLS & D” Calculations.

Only a limited number of columns are necessary to calculate all algorithms.

One column is necessary for each algorithm. For each In-Library target, one column is

needed for the TLS and one for the Delta score. Next, a column is needed to list which

TLS-threshold and which Delta-threshold is being used. Then, a column is needed for

the maximum TLS of a row, the maximum Delta of a row, and the Delta of the target

with the biggest TLS. Thus, if k is the number of In-Library targets, 2k+5+5 columns

are needed. One additional column indicating the actual target in the run is

unnecessary for the algorithm calculations, but it is added for later use and current

 53

insight. Later to calculate values for the ROC and Vertical ROC curves, a few more

columns are necessary. They are necessary to determine the next highest Delta score,

entitled “Other_D,” and the difference between the two, entitled “Beat_Delta.” These

columns increase the number of columns needed to 3k+5+5+2. The number of

columns might become important later, as MS Excel has a limited number of columns

per worksheet for use.

ROC Curves

The ROC curves generated for this data are not the usual ROC curves. Usual

ROC curves deal with two declarations and one threshold. Changing the threshold

determines whether a “TRUE” or “FALSE” is declared. Lower the threshold enough,

and all samples are called “TRUE,” while raising it should eventually have all samples

declared “FALSE.” True Positives, the probability of “TRUE” given that it’s TRUE,

is plotted against False Positive, the probability of “TRUE” given that it’s FALSE. If

the threshold is low enough that everything is declared “TRUE” then values for both the

True Positive and False Positive are 1:

P(“TRUE”|TRUE) = 1 and the P(“TRUE”|FALSE) =1.

If the threshold is high enough, then nothing is declared “TRUE” and values for both

the True Positive and False Positive are 0:

P(“TRUE”|TRUE) = 0 and the P(“TRUE”|FALSE) =0.

This is not the case with the sample data set.

The sample data set has multiple responses and either no thresholds or multiple

thresholds. The algorithms with no thresholds, Biggest-TLS and Big-D, will always

return one response, the In-Library target with the biggest TLS or the biggest Delta,

respectively, regardless of the thresholds.

 54

Also, as shown above in the section on User-Defined Parameters, lowering the

threshold for an In-Library target does not guarantee that the corresponding declaration

will ever be returned. Declarations are dependent on all thresholds and all TLS.

Dependence on TLS is easily shown with the Biggest-TLS, TLS-Bound, and the “TLS

& D” algorithms, since the only response ever considered by these algorithms is either

the declaration with the highest TLS or “Unknown.” If the correct response did not

have the highest TLS, it will never be considered as an answer for these three

algorithms. Thus, any ROC curve may not have a threshold value where the True

Positive and False Positive equal 1. If the threshold is increased, then – except for the

Biggest-TLS algorithm, Big-D algorithm, and the case where Clutter is the actual target

– there should be a threshold where the True Positive and False Positive equal 0. This

means any ROC curve created may have an upper limit other than one on both True

Positives and False Positives.

Clutter is a special case. In the case where the Clutter is the actual target,

lowering the threshold on “Clutter” might change Delta values to increase the number

of “Unknowns” declared in some algorithms, but it does not guarantee all samples being

declared “Clutter.” Raising the threshold for Clutter declarations, on the other hand,

might change declarations from “Clutter” to “Unknown.” However, “Unknown” is

still an acceptable response for Clutter. Thus, raising the threshold does not guarantee

all “Clutter” and “Unknown” responses will be eliminated. Thus, Clutter is not

considered for a ROC curve plot. The threshold for “Clutter” will, however, affect the

plots for the other declarations.

Multiple declarations also require a modification to the ROC curves. Each

declaration is competing against every other declaration in the library as well as

 55

“Unknown.” To create a two-dimensional ROC curve, each In-Library target must be

considered separately. For each target’s case, a “TRUE” will indicate the algorithm

chose that target for its declaration whereas, “FALSE” will indicate that some other

target was declared. Thus, a ROC curve must be plotted for each target. In addition,

a ROC curve can be plotted for each algorithm. Since algorithms are constrained to at

most three curves as two of the five are unaffected by thresholds, each graph in the UIT

shall plot all three algorithms in one graph for each individual In-Library target

excluding Clutter.

Although Clutter will not be plotted as its own ROC curve, it will still be used

for the other ROC curves. For each target, “Clutter” and “Unknown” will be counted

as a declaration of “FALSE.” Although it may be suggested that “Unknowns” be

taken out of the consideration, the thresholds being used can change a declaration to

“Unknown” instead of “FALSE,” so “Unknown” shall be considered a “FALSE” case.

ROC Curve Calculations

After considering how ROC curves will handle multiple thresholds and

multiple declarations, being able to build a robust, routine, and dynamic ROC curve is

the next challenge. Although the ROC curve for each algorithm will be plotted

together on one graph for every target, it still implies a ROC curve is necessary for

every non-Clutter In-Library target and three algorithms. Considerations must be

made for the calculations on the limitations of MS Excel as well.

To determine ROC curves, one worksheet is allocated to each ROC-friendly

algorithm: TLS-Bound, D-Bound, and “TLS & D”. These worksheets are named A2,

A5, and A3 respectively. In addition, three additional worksheets were made so that

the current operating point on the ROC curve for the algorithm would be apparent.

 56

Each worksheet will have calculations for every target. For calculations to be

made dynamically, the range of thresholds must be consistent, even if the thresholds

change. Thus, thresholds are plotted at 0.1 increments from 0 to 1. It should be

noted that a TLS-Bound with a 0 threshold is the same as Biggest-TLS and D-Bound

with a -1 threshold is the same as Big-D since 0 is the lowest TLS value and -1 is the

lowest Delta value. At each threshold, a point on the ROC curve shall be plotted.

Next, we shall examine what values are needed to calculate points for each algorithm.

 For TLS-Bound, only a few additional columns are necessary. Since a True

Positive is P(“TRUE”|TRUE), we are interested in indicating if a row is TRUE and

whether the response at each threshold is “TRUE.” With Unknowns being counted as

FALSE, FALSE only happens when it is not TRUE or ~TRUE, so one column will

suffice to indicate if a row is TRUE or FALSE. In practice, the UIT will use a binary

number to indicate whether a row is TRUE or FALSE for each target.

Although the actual target never changes due to changes in threshold, the

declarations change with threshold. Thus, one column is needed per target per

threshold. However, TLS-Bound and TLS & D algorithms only have two declarations

available. These declarations are “Unknown” or the same declaration as Biggest TLS.

Since this is true regardless of the thresholds, another binary indication of whether the

declaration of “TRUE” was made under Biggest-TLS is included. Since

“Unknowns” are considered “FALSE,” only two responses for this column are allowed:

“FALSE” and “TRUE.” These responses are converted into 0 and 1, respectively.

Each threshold can use this declaration column to help calculate its own response.

For each threshold, rather than plotting “TRUE” and “FALSE” in each column,

the information was combined with TRUE and FALSE to save room. Thus,

 57

“TRUE”|TRUE is indicated by an “A”, “FALSE”|TRUE is indicated by a “B”,

“TRUE”|FALSE is indicated by a “C”, and “FALSE”|FALSE is indicated by a “D.” A

sample of the resulting table is shown in Table 17. Its placement of the worksheet is

shown in Figure 14.

Table 17. Truth data calculations.

Figure 14. Truth data calculations spreadsheet screenshot.

In this figure, the column entitled T1 shows a 1 if the actual target is a T1

(Clutter). Thus, T1 is a column for TRUE in this case. Likewise, ~ T1 is a column

for FALSE. The next column, “T1” indicates a declaration of “T1” in the Biggest TLS

algorithm. This sample was taken from the A2 worksheet, signifying TLS-Bound

results. Since the algorithm Biggest-TLS is the special case of TLS-Bound with a

 58

threshold of 0, the column where the threshold is 0 is actually is the declaration that

would be made in Biggest-TLS, so it should be the same as the “T1” column except

with TRUE and FALSE considered. The ~T1 column was found unnecessary, but it

remains for error-checking and as a space holder due to the spacing needed for the other

calculations shown above the rows that have not yet been discussed.

As stated earlier, the columns after “T1” are labeled by the threshold to which

they correspond. Underneath each threshold is a letter corresponding to a block in a

probability matrix. The probability matrix and its coding are shown in Table 18.

Table 18. Probability Matrix.

To determine which letter is correct involves an if-statement. A sample if-

statement is as follows:

=IF(AND($AO24=1,$AM24=1,$H24>AT$19),"A",

IF(AND($AO24=1,$H24>AT$19,$AM24=0),"B",

IF(AND(OR($AO24=0,$H24<AT$19),$AM24=1),"C",

IF(AND(OR($AO24=0,$H24<AT$19),$AM24=0),"D","E"))))

The first statements in the AND() function verify that it is TRUE and “TRUE.” The

last statement in the AND() function determines if the value of the highest TLS, the

“Max” column computed earlier, is greater than the TLS-threshold identified in the

“Thres” column. If everything is true, then an “A” is returned. The rest of the if-

statement does likewise comparisons and determines to which part of the probability

matrix the value corresponds. A final value of “E” is included to identify any mistakes

 59

and ensure that a coded letter is chosen based on their corresponding statement being

true. No “E’s” were found in the analysis of the sample data.

 D-Bound’s information is calculated in much the same way as TLS-Bound was.

The difference is Big-D is used instead of Biggest-TLS in the declaration column. A

declaration column is shown in the example as the column with the “T1” heading.

 “TLS & D” is slightly different. Like TLS-Bound, it uses the information

gathered from Biggest-TLS. It cannot use the information gathered from TLS-Bound,

since TLS-Bound depends on the TLS-threshold. Thus, it must make the same check

as done for TLS-Bound. In addition, it must calculate a new Delta value for

comparison with each new threshold. This value must be compared to the maximum

Delta value of the other targets.

 Since the maximum Delta of the other targets must be identified, a column is

included entitled “Other_D.” Although it seems this must be replicated for each target,

the UIT takes advantage of “TLS & D’s” reliance on the value with the biggest TLS.

As it has already been stated, the only outcomes of “TLS & D” are the value of the

biggest TLS or “Unknown.” Thus, Other_D only needs to be calculated for the target

identified in Biggest-TLS. The example used earlier in Table 16 can illustrate this

point. Thus, the table is shown again here as Table 19.

Table 19. Example for Alt_D.

 In this example, Biggest-TLS’s response is “Tiger.” Even though the actual

target is a Panzer, “Tiger” had the biggest TLS. For any In-Library target other than

 60

“Tiger,” the only possible responses are “Tiger” and “Unknown” which are both

“FALSE.” For Tiger under “TLS & D,” the possible responses are “Tiger” and

“Unknown,” which correspond to “TRUE” and “FALSE.” These declarations are

dependent on the thresholds. Thus, only for Tiger will an alternate Delta need to be

calculated. In this case, the maximum Delta for the other targets, called Other_D, is

0.231. If the threshold for “Tiger” was lowered by 0.032, the response for “TLS & D”

would change from “Unknown” to “Tiger.” In the probability matrix, the coding

would change from D to B indicating the change from “FALSE”|FALSE to

“TRUE”|FALSE since the actual target was a Panzer.

 Only one Other_D needs to be calculated. To do this, another column is

created for each Delta score. The Delta score of the target identified in Biggest-TLS is

reduced to -1. Then, the maximum of the Delta scores is calculated. Since -1 is the

lowest possible Delta score, the maximum of all these new Delta scores is the maximum

of the Delta scores not identified in Biggest-TLS. The value 0 was not used in this

case, since it is possible to have each Delta score negative. Once this is accomplished,

the if-statement to determine which letter should be used per threshold per target is:

=IF(AND($AG24=1,$AE24=1, $I24> AK$22,$I24-AK$22>=$J24),"A",

IF(AND($AG24=1,$I24>AK$22,$I24-AK$22>=$J24,$AE24=0),"B",

IF(AND(OR($AG24=0,$I24<AK$22,$I24-AK$22<$J24),$AE24=1),"C",

IF(AND(OR($AG24=0,$I24<AK$22,$I24-AK$22<$J24),$AE24=0),"D",

"E"))))

Along with the comparisons made for TLS-Bound, the if-statement compares the Max

to the new threshold to create a new Delta score. This score is then compared to the

 61

Other_D. If it is greater than or equal to the Other_D and all other comparisons for the

first AND() function are true, then “A” is returned.

ROC Curve Points and Plots

 Once the truth data is compiled, summary statistics must be calculated for plots

to be created. Figure 13, shown again here as Figure 14, shows where the summary

data is positioned on each worksheet for ease of calculations.

Figure 15. Positioning of Truth summary data.

For most ROC curves, the priors do not play a role. Instead, all that is needed

is if a run resulted in a “TRUE” or not and whether that run was based on a TRUE case

or a FALSE case. Due to classifying each run as one of four cases in a probability

matrix, this information is readily available. By using COUNTIF() functions,

summary data from all each column can be calculated and placed into two cells. One

cell shows the True Positive result for the column, P(“TRUE”|TRUE), and is calculated

by:

=COUNTIF(AV24:AV3916,"B")/

(COUNTIF(AV24:AV3916,"B")+COUNTIF(AV24:AV3916,"D"))

 62

The other cell shows the False Positive results for the column, P(“TRUE”|FALSE), and

could be calculated by:

=IF((COUNTIF(AV24:AV3916,"A")+COUNTIF(AV24:AV3916,"C"))=0,

0,COUNTIF(AV24:AV3916,"A")/

(COUNTIF(AV24:AV3916,"A")+COUNTIF(AV24:AV3916,"C")))

The if-statement was added to prevent divisions by zero.

 Unfortunately, this is not a typical ROC curve since FALSE can occur by

various means. The P(“TRUE”|FALSE) actually depends on what target FALSE is.

In other words, P(“TRUE”|FALSE) in the case of a Panzer can be written

P(“Panzer”|Not a Panzer). If a Tiger is always confused as a Panzer, but a Bradley is

never confused as a Tiger, then the P(“Panzer”|Not a Panzer) will depend on how many

Tigers and Bradleys will be encountered. If only Tigers remain, this probability will

be one. If only Bradleys remain, the probability will be zero.

 To determine the correct P(“TRUE”|FALSE), Bayes’ Rule must be used

(Wackerly, 2002: 68). For example, consider the case where the target in question is

Tiger or T2. The desired probability is P(“Tiger”|Not a Tiger) or P(“T2” | ~T2). The

options for Not a Tiger or FALSE are each of the other targets: Clutter, Panzer, Bradley,

or T-72. These cases are mutually exclusive as one target is recognized at a time.

Thus, the Bayes’ Rule for the target T2 can be written as:

(" 2"|~ 2)

(~ 2 " 2")

(~ 2)

((1 3 4 5) " 2")

(~ 2)

(1 " 2") (3 " 2") (4 " 2") (5 " 2")

(~ 2)

(1)* (" 2"| 1) (3)* (" 2"| 3) (4)* (" 2"| 4) (5)* (" 2"| 5)

(~ 2)

P T T

P T T

P T

P T T T T T

P T

P T T P T T P T T P T T

P T

P T P T T P T P T T P T P T T P T P T T

P T

∩
=

∪ ∪ ∪ ∩
=

∩ + ∩ + ∩ + ∩
=

+ + +
=

(2)

 63

To calculate this value in MS Excel each of these probabilities must be

identified and referenced. P(T1) through P(T5) are already given as prior probabilities.

P(~T2) is simply one minus P(T2). To obtain the other probabilities, the conditional

probabilities, the data in MS Excel is sorted before any calculations begin. The data is

sorted by the priority of In-Library targets. Then the Countif() function used earlier

only counts only rows corresponding to each individual target. Thus, the

P(“Declaration”|Specific Target) can be obtained by counting responses in each target’s

section. The summation occurs underneath the algorithm calculations and is

referenced by the summary cell for P(“TRUE”|TRUE). A picture of where this

calculation takes place is given in Figure 16.

Figure 16. Bayes' Rule Applied.

Once the summary data is calculated, data can be compiled to make the ROC

curve. Data from each algorithm worksheet – A2, A3, and A5 – is grouped together

by target on a new worksheet, Algorithms. The table of algorithms for one target

could look like Table 20. A graph from the table could look like Figure 17.

Table 20. Table of Algorithms for one target.

 64

Figure 17. ROC curve for one target.

Figure 17 shows how an upper bound exists for both the True Positive and the

False Positive. The upper bound is caused by this ROC curve’s reliance on the highest

TLS or the highest Delta depending on the algorithm. For example, if a Tiger is

recognized, but the TLS is 0.5 for “Tiger” and 0.6 for “Panzer,” lowering the threshold

for “Tiger” will never result in “Tiger” being the highest TLS. Depending on the

threshold for “Panzer,” the return will either be “Panzer” or “Unknown;” both of which

are misidentifications. Changing thresholds only matter when “Tiger” is the highest

TLS or when determining Delta scores. Thus, even at the lowest thresholds, “Tiger”

may not have a 100% declaration rate. This result is discussed in more detail in

Section IV, Results and Analysis.

Figure 17 does not show where the current operating conditions are. For MS

Excel to plot current operating points, new sets of data needed to be added. Thus, new

worksheets were created – A2Curr, A3Curr and A5Curr – to calculate the current

 65

position of each algorithm. In each of these worksheets, rather than testing over a

range of thresholds, the test was confined to only the current threshold. This threshold

is still referenced to the “Algorithms” spreadsheet, so any change would instantly

change end results. The resulting table for the Tiger target is in Table 21 while a

sample graph is shown as Figure 18.

Table 21. Table of Algorithms for one target with Current Thresholds.

Figure 18. ROC curve with Current Thresholds.

Figure 18 shows how the current operating point may be a little off of the ROC

curve since the ROC curve is only plotted at 0.1 increments. Since a curved line is

fitted, it may also look to be curving down at some points. However, the ROC curve is

 66

still useful. This plot shows that in this example the TLS-threshold for “Tiger” is good

for TLS-Bound and TLS & D. However, the current True Positive value for D-Bound

is low. By trading for poorer performance in False Positives, a much higher True

Positive can be obtained for the D-Bound algorithm by reducing the Delta-threshold.

This may be surprising as the Delta-threshold is set at 0.05. However, since some runs

can have all negative Delta scores, a lower Delta-threshold is not unheard of. Due to

the low nature of Delta scores, the thresholds used to generate points for D-Bound’s

ROC curve has actually been changed from 0 to 1 in 0.1 increments to a set of

thresholds better suited for the sample data. Due to the size limitations of MS Excel,

only a set of eleven numbers is used. Agreeing upon the best set of thresholds to use

may be a topic for future study.

Vertical ROC Curves

 The ROC curve above shows a systems approach to error. If the ROC curve

indicates poor performance, the system must be improved so that the correct target will

be declared given it is the actual target. As stated in Section II, Literature Review, this

is considered a Horizontal MOP. However, an operator is more concerned with

whether a target is what the system declares it is as well as the probability a target goes

undeclared or is misidentified as another target. In other words, the operator is more

concerned about whether the enemy tank on the radar screen is really an enemy tank,

P(TRUE|”TRUE”) and whether Surface-to-Air Missiles, in general, aren’t being

identified as “Unknown,” “Clutter,” or friendly vehicles, P(TRUE | “FALSE”) . These

occurrences are examples of Vertical MOPs.

 Rather than calculating Vertical MOPs for each target and each algorithm at a

low, current and high threshold level, another option is to graph all Vertical MOPs

 67

much like a ROC curve. A ROC curve plots the Horizontal MOP values, True

Positives, P(“TRUE”|TRUE), and False Positives, P(“TRUE”|FALSE). An alternative

ROC curve, referred to in this thesis as a Vertical ROC curve, could plot Prior

Predictive Values, P(TRUE| “TRUE”) and Negative Predictive Values, P(TRUE|

“FALSE”).

 The Vertical ROC curves are not true ROC curves. As a true ROC curve uses

the P(“TRUE”|TRUE), it can be calculated as P(“TRUE”&TRUE) / P(TRUE). Here,

the divisor, P(TRUE), is stable and does not depend on the threshold. However, the

Positive Predictive Value, P(TRUE| “TRUE”), can be calculated as P(“TRUE”&TRUE)

/ P(“TRUE”), where P(“TRUE”) definitely depends on the threshold. Even if the

threshold is lowered to its minimum, the P(“TRUE”) might still be zero if the sample

size is small or the return for the target is faulty. P(“TRUE”&TRUE) will always be

less than P(“TRUE”), but it can vary wildly as P(“TRUE”) changes with threshold.

When P(“TRUE”) is zero, a one shall be used for P(TRUE | “TRUE”). This assumes

that at the highest threshold, only a TRUE target would make that threshold. It shall

be shown later that if this assumption is faulty, it will be apparent in the Vertical ROC

curve. However, in practice as far as this research has gone, this is a valid assumption.

The Negative Predictive Value also has an interesting affect at the extreme

threshold. If the threshold is increased to its upper limit, P(“FALSE”) becomes one as

anything is declared as “Unknown” or as another target. However, the P(TRUE &

“FALSE”) can only be as high as P(TRUE). The Negative Predictive Value, P(TRUE|

“FALSE”), can be calculated as P(“FALSE”&TRUE)/P(“FALSE”). At the highest

threshold, the numerator, P(“FALSE”&TRUE), grows closer to P(TRUE) and the

 68

denominator, P(“FALSE”) grows closer to one. Thus, an upper bound of P(TRUE)

rather than one is found for Negative Predictive Values at the highest threshold.

Although the Vertical ROC curve is not a true ROC curve, it is still very useful.

It can provide all the information about Vertical MOPs for a target at a glance. It also

allows for easy comparison between algorithms. Finally, it can be used to show the

impact uncertainty on prior populations of each target might have on an algorithm’s

effectiveness.

Calculating Vertical ROC Curves

Much of the calculations for Vertical ROC curves can be created from the

information already gathered. Figure 15, showed again here as Figure 19, lists the

information needed as well as showing how the information can be conveniently placed

on each algorithm’s worksheet for easy computation.

Figure 19. Placement for calculating Vertical ROC curves.

The information necessary is: P(TRUE) and P(“TRUE”|TRUE). From this,

P(TRUE & “TRUE”) can be found by multiplication. Likewise, P(FALSE &

“TRUE”) can be found. Adding these probabilities will give P(“TRUE”). Since

 69

P(“TRUE”|TRUE) is known, P(“FALSE”|TRUE) can be calculated by 1 minus this

probability. Similarly, P(“FALSE”|FALSE) can be found. Thus, with the prior

probabilities, P(“FALSE”&TRUE) and P(“FALSE” & FALSE) can be found. Their

summation gives the P(“FALSE”). With P(“FALSE”) and P(“TRUE”) along with

P(TRUE & “TRUE”) and P(TRUE & “FALSE”), both P(TRUE|“TRUE”) and

P(TRUE|“FALSE”) can be found.

The compilation of Vertical ROC curve data is very similar to that of ROC

curves. A table from the compilation sheet is given in Table 22, while the

corresponding graph of the Vertical ROC curve is given in Figure 18.

Table 22. Vertical ROC Curve Table for Tiger.

Figure 20. Vertical ROC Curve for Tiger.

 70

The plot in Figure 20 suggests that if a better Positive Predictive Value is

needed then the thresholds for all three of the algorithms are low. Table 22 suggests

that a threshold around 0.6 or 0.7 for TLS-Bound or TLS & D would increase the

Positive Predictive Value, but to the detriment of the Negative Predictive value. The

threshold for “Tiger” is currently 0.49. The threshold for “T-72” is 0.605 and the

Vertical ROC curve, given in Figure 21 looks much better.

Figure 21. Vertical ROC Curve for T-72.

 Figure 21 also shows a clearer difference between each of the three algorithms.

TLS-Bound in this example has the best Negative Predictive Value, but the worst

Positive Predictive Value. D-Bound is just the opposite, whereas TLS & D is in

between. Also, the curves show how these points will be adjusted as the thresholds

change. TLS-Bound can trade Positive Predictive Value for Negative Predictive Value

simply by adjusting the threshold, whereas D-Bound can get worse in Negative

Predictive Value with little to no improvement in Positive Predictive Value. The value

 71

of the tradeoff is up to the decision-maker, but the information is present for a decision

to be made.

As stated earlier, each of these Vertical ROC curves appear to have an upper

limit for Negative Predictive Value. In the cases shown in Figures 20 and 21, the

Negative Predictive Value, or P(TRUE|”FALSE”), seems bound at 0.2. The reason for

this was stated before, but will be restated here. This is due to the prior probabilities of

the example, which have the priors of all five targets at 0.2.

As the threshold increases, P(TRUE | “TRUE”) should increase as less False

Positives are made. Also, P(“TRUE”) decreases to almost zero and P(“FALSE”)

increases to one as it becomes more difficult to declare an event as “TRUE” with the

higher threshold. The Negative Predictive Value can be calculated in terms of

P(“FALSE”) and P(TRUE). As shown in the formulas below, the Negative Predictive

value is bound by the Prior as the threshold increases.

P(TRUE | “FALSE”) = P(TRUE & ”FALSE”) / P(“FALSE”)

 = P(“FALSE” | TRUE) * P(TRUE) / P(“FALSE”)

 = (Value no greater than 1) * Prior / 1 = Prior

The higher the threshold, the higher the probability the event is TRUE when

declared “FALSE,” but only up to the probability of TRUE. Thus, as stated before, the

Negative Predictive Values are bound by the Prior.

The bounds for Negative Predictive Values may decrease as new targets are

considered, as each target will have a portion of the priors. To keep the Negative

Predictive Value visually comparable, future analysis might attempt to scale the Vertical

ROC curve graphs based on the priors. The UIT, however, will keep all graphs from

zero to one to limit confusion in scales.

 72

Prior Uncertainty

Another question with the Vertical ROC curve is how much the curves mean if

the prior probabilities are uncertain. The means for entering priors into the UIT is

shown earlier in Figure 10 and shown again here as Figure 22.

Figure 22. User-Defined Priors.

Three values for priors are asked for on each target. The values are the most

likely population, the highest possible population and the lowest possible population.

The data entered is not a probability, but an estimate of the number of units remaining.

This will prevent probabilities greater than one to be mistakenly entered. The spawned

worksheet will create a percentage for each target based on the populations entered.

The values will be available on the “Algorithms” sheet for updates. This allows the

decision-maker to enter the number of vehicles or targets likely to be encountered in an

area and change it later as the operational environment changes.

The three values give many options for analysis. With the highest, lowest and

most-likely values entered, a random sampling could be taken by forming a triangular

distribution. Currently, the UIT instead calculates a highest possible percentage and

lowest possible percentage in addition to the most likely percentage. Rather than sum

the entire row to calculate these percentages as was done with the most likely

population percentages, the UIT takes the highest possible population for a target and

 73

adds the lowest possibly populations for all other targets to calculate the maximum

possible percentage.

For example, Figure 22 shows the highest possible population for Tigers as 60.

The lowest possible population for all other targets is each 10. The sum of these

values is 100. Thus, the highest probability possible for encountering a Tiger occurs

during the scenario when 60 Tigers exist as well as only 10 confusers, 10 Panzers, 10 T-

72s and 10 Bradleys. The resulting probability is 60 divided by the sum of possible

targets, 100. So, at most, the probability of encountering a Tiger is 60%. The

minimum probability is calculated in a similar manner by taking the lowest possible

population for a target and the highest possible populations from the other targets to

calculate the lowest possible percentage per target.

Once the extremes to the priors are calculated, a Vertical ROC curve is created

for each prior per target per algorithm. The resulting graph will be called a Priors

curve. To generate these curves, worksheets for the three ROC-Friendly algorithms –

TLS-Bound (A2), TLS & D (A3), and D-Bound (A5) – are created and named

PriorsA2, PriorsA3 and Priors A5 respectively. Rather than copying all data, only the

summary truth data is necessary. The truth data is not hard-copied over, but instead

referenced by each of the sheets to the corresponding initial algorithm worksheet. The

final worksheet looks like that shown in Figure 23.

 74

Figure 23. Snapshot of a Priors worksheet.

The values in the figure are too small to read, but it is provided just to give a

general layout of the worksheet itself. The items of interest to the user would be the

graphs running along the bottom of each of these worksheets. Two were moved up to

show the data beneath. Two Priors curves are included as Figures 24 and 25.

Figure 24. Priors Curve for Tiger.

 75

Figure 25. Priors Curve for T-72.

Both graphs show that the smaller the percentage of population, the lower both

probabilities become. On the other hand, if the population is larger than expected,

P(TRUE) is increased, so P(TRUE| “TRUE”) and P(TRUE| “FALSE”) tend to increase.

How these values increase suggest ways of changing thresholds as priors change.

For example, the thresholds on “Tiger” should be increased if the population is

suspected to be lower than stated, as the Positive Predictive Value climbs with little

increase in Negative Predictive Value. However, thresholds should not be changed if

the Tiger population might be higher than suspected. Alternatively, even if the

population of T-72s is higher than suspected, the values do not change very much.

Thus, the T-72 Vertical MOPs are not sensitive to more T-72s on the field. The

thresholds for T-72s should still be raised if the population is lower than suspected.

Thus, the Priors curves show sensitivity to uncertainties in populations.

 76

ROC Curves Based on Normalized Thresholds

Two final ROC curves can be made from this data. These are ROC curves to

determine the validity of TLS and Delta as quantifiers. Since each In-Library target

has both a TLS score and a Delta score, it is possible to normalize these scores and see

how the targets compare to one another. By taking each target individually for each

run, a target’s score can be compared to the sum of the other scores. By making all

negative Delta scores equal to 0, most scores will be bounded between 0 and 1. The

only exception is where all Delta scores are zero. In this case, the run is excluded from

analysis.

This ROC curve is more like a usual ROC curve than the other two, but it may

be the least practical. The Normalized ROC curve will go from 0 to 1 in both True

Positive and False Positive, since the scores are bound between 0 and 1, and the

responses are limited to “Meets score” and “Does not meet score.” If the target meets

the score, then “TRUE” is considered declared. This will prove impractical, however,

as each score considers only its value against the sum of the other values rather than the

individual scores. For example, if the threshold for “Tiger” is set at 0.4, this

computation will consider “Tiger” the response if it scores better than 0.4. However, a

score of 0.4 means 0.6 was split amongst the other four targets. On the same run, the

score for “Panzer” may be 0.5, in which case “Panzer” would’ve been selected, or the

score for every other target may have been 0.15, making “Tiger” the only appropriate

choice. Thus, the score in this case has no bearing on what any algorithm might

actually return. The Normalized ROC curve will only help to judge the use of TLS

and Delta as quantifiers.

 77

To calculate scores for the first quantifier, TLS, the number of columns needed

is one plus one for each In-Library target. The one individual column is the

summation of all TLS-Scores. Next, Scores are calculated by dividing each target’s

TLS-Score by the summation of all TLS-Scores. Then, using a method similar to

those applied to computing the original ROC curve data and the Vertical ROC curve

data, summary truth information is calculated.

For the second quantifier, Delta scores, a few more columns are required.

First, the original Delta scores should be copied, except with all negative values being

considered as zero. Next, the summation of these values is calculated. Finally,

scores are created by dividing the Delta score for each target by the summation as long

as the summation is not zero. If the summation is zero, the data used to compute truth

table will allow for a “U” to be returned in addition to the four coded letters – A, B, C

and D – corresponding to different sections of the probability matrix. Any item with a

“U” will be skipped by the COUNTIF() formulas.

In a similar manner with the ROC and Vertical ROC curves, the Normalized

ROC curves are grouped by targets on one page. Rather than having three algorithms

per graph, only the lines for the two quantifiers are combined on each graph. Two

such graphs are provided as Figure 26 and 27.

 78

Figure 26. Normalized ROC Curve for Tiger.

Figure 27. Normalized ROC Curve for T-72.

These figures show that both TLS and Delta provide insight into making the

decision. Both quantifiers are much more useful in deciding whether a target is a T-72

or not as the Normalized ROC curve is in the far upper-left hand corner of Figure 27.

This could possibly suggest a fusion technique that first considers whether a target is a

T-72 or not may be appropriate. However, the graphs also show how only a few

points identify the curves for TLS and Delta for the Tiger Normalized ROC curve.

 79

This indicates consideration must be placed in which thresholds generate these curves.

Finally, none of these curves have a current operating condition, since none is possible.

Summary Statistics

Classifier Evaluation Quantifiers are described earlier as historical means to

measure error. These quantifiers include Recall, Accuracy, F-Score, Precision and

Mutual Information. These scores have been adjusted to work in a multiple

declaration and error situation. The UIT uses one sheet to calculate these values and

one sheet to display the result. A snapshot of the sheet used to calculate these values,

entitled “Stats,” is given in Figure 28.

Figure 28. Snapshot of "Stats" worksheet.

 The individual entries are too small to read, but the snapshot gives a layout of

the worksheet. The worksheet starts with a list of all runs, the actual target being run

against, and the response of each of the five algorithms. The five white bands

represent each algorithm. In each white band, the In-Library targets are separated into

columns. The name of the actual target is placed in the column of the In-Library target

that was declared for that algorithm. These are counted for each five algorithms in the

next section of the worksheet. The count for Biggest-TLS (A1) is shown in Table 23.

 80

Table 23. Count for Biggest-TLS.

 Table 23 shows actual targets down the left and In-Library targets as the

heading of each column. Confusers have all been combined into T1 for this analysis.

Each cell indicates the number of times the actual target is declared as the In-Library

target. For example, Clutter (T1) is declared 714 times as “Clutter”, 336 times as

“Panzer,” and 777 times as “Bradley.” The Row Sum indicates how many times the

actual target was tested against.

By dividing all of the values in Table 23 by their Row Sum, P(“Declaration” |

Actual) can be calculated. These values are shown in Table 24. The cells highlighted

in yellow show where P(“TRUE” | TRUE) are found for each target. The sum of these

values is called Recall and is shown in the bottom, right-hand corner. This value will

be placed on the worksheet “ClassMetrics” with all other Classifier Evaluation

Quantifiers for each algorithm.

Table 24. Recall Table.

 The Priors are actually placed on the spreadsheet before the last table, but are

not used until Accuracy needs to be calculated. By multiplying the values of the last

graph by the priors, or multiplying P(“Declaration” | Actual) * P(Actual), the P(Actual

& “Declaration”) can be found. The result is given in Table 25. Accuracy is defined

as P(TRUE & “TRUE) plus P(FALSE & “FALSE”) (Wallach, 2004). For multiple

 81

declarations, it shall be redefined here as P(TRUE & “TRUE”) for each target. These

values will be highlighted in the worksheet, as they are highlighted here, in yellow.

The resulting Accuracy is in the bottom, right-hand corner. Table 25 also shows that

before the Accuracy is calculated, the probabilities of declarations, P(“Declaration”) for

each target are also calculated.

Table 25. Accuracy Table.

 Precision is P(TRUE | “TRUE”) and F-Score is the harmonic mean between

Precision and Recall (Wallach, 2004). By dividing each cell in Table 25, P(Actual &

“Declaration”) by P(“Declaration”), the P(Actual | “Declaration”) can be obtained.

The possibility of dividing against zero is guarded against. These values are shown in

Table 26. P(TRUE | “TRUE”) is the definition of precision (Wallach, 2004). With

multiple declarations, it is redefined here again as the sum of these values for each

target. These values are highlighted in yellow below. In addition, an F-Score is

evaluated using the Precision and Recall of each target and the sum of the F-Scores is

also calculated in Table 26.

Table 26. Precision and F-Score Table.

 The final Classifier Evaluation Quantifier suggested is Mutual Information

(Wallach, 2004). This value involves numerous steps include a logarithm, quotient

 82

and two products. These steps are each accomplished by the UIT and the results are

shown in Table 27.

Table 27. Mutual Information Table.

 Once all the Classifier Evaluation Quantifiers are calculated, they are presented

in the worksheet, “ClassMetrics,” as Table 28 shows.

Table 28. Classifier Evaluation Quantifiers.

Another quantifier was originally suggested called a Cost Matrix, but proved

too unreliable to include at this stage of the UIT. The Cost Matrix uses designations of

“Neutral,” “Friend,” “Target of the Day,” “Other Hostile,” “Out-of-Library,” and “Non-

Declaration” for each In-Library target and each actual target. A prior probability was

 83

necessary for each Actual target. The Cost Matrix was then determined by calculating

conditional probabilities, multiplying them by the suggested cost matrix, and then

adding all the costs for each condition. The three steps – conditional probability, cost

matrix, individual costs – are shown in Figure 29.

Figure 29. Steps for computing a Cost Matrix.

 The Cost Matrix is not included in the UIT at this stage for multiple reasons.

It relies on correct priors that are estimates. It relies on costs that are very subjective.

It requires designations which were not provided. It also requires the probabilities of

all the confusers. With so many unknowns, this quantifier is explored and

documented, but not added to the UIT at this time.

 84

IV. Results and Analysis

The results from a possible analysis on the sample data is outlined in this

section to show how a study using the tool could proceed. The results are determined

using the same 3893 experimentation runs provided in the sample data. None of the

user-defined parameters – TLS-threshold, Delta-threshold, nor priors – were given at

the beginning of the study, as parameters can be estimated by the user, the decision

maker, or the subject matter expert. The sample parameters used for the first round of

analysis are given in Figure 30.

Figure 30. Sample data parameters.

The values for “Most Likely Population” are chosen to give all targets equal

priors. Thus, all targets are given the equivalent number of 20 units as a most likely

population. Likewise, the lowest possible populations for each target were set to equal

values of 10 for some stability in calculations. For some contrast, the values for

“Highest Population” vary slightly, from 50 to 90 in increments of 10. The effects of

these values will be studied during the sensitivity analysis of prior probabilities portion

of the study.

The TLS-threshold values, identified as “Min Likeness,” are specifically chosen

in this sample analysis by first inspecting the data to look for the lowest TLS Score each

 85

actual target will return when compared to itself. During the inspection, the data was

separated into groups of actual targets. Only the experimental runs against that actual

target are considered in each graph. Next, for each of these experimental runs the TLS

comparing the actual target to its In-Library target equivalent is taken. From these

values, the lowest possible True Score, TLS for the target when compared to its In-

Library equivalent, is selected as the TLS-threshold for that target.

For example, when Tigers were tested as the actual target, the identification

system returned TLS values ranging from 0.49 to 1.00 when comparing the actual Tiger

to its In-Library “Tiger.” This range of True Scores can be seen in the scatterplot of

Tiger (T2) scores shown earlier and provided again here as Figure 31. The scatterplot

also shows the scores for the other targets at each True Score encountered in the

experiment.

Figure 31. Tiger scores showing True Scores range between 0.49 and 1.0

Thus, the lowest return for “TRUE” when the signal is TRUE for Tigers is a

0.49 for this sample. Any return less than this value is clearly FALSE. This value is

chosen for the baseline TLS-threshold so only FALSE identifications are eliminated by

 86

this threshold. The actual TLS-threshold should be no less than this value unless an

analysis on Delta scores is accomplished. In contrast, Delta-thresholds are set at 0.05

to eliminate some positives to allow for some comparison between the algorithms.

Thus, all user-defined parameters are clearly identified for the first analysis.

Since the spreadsheet is dynamic, the parameters may be adjusted later during further

rounds of analysis. A good use for the first study is to determine how the parameters

should change. Although the best algorithm is sought, each algorithm is partially

defined by the parameters and well-chosen parameters can improve each algorithm.

Once each algorithm is at its best, the best of the algorithms can be chosen.

First Analysis

After all parameters are entered, the analysis begins by taking a look at ROC

curves. As stated previously, ROC curves will only show for the algorithms TLS-

Bound, TLS & D, and D-Bound. The definitions for these algorithms shall be repeated

here as a reminder of what they involve.

• A1 or Biggest-TLS: (Forced) The target with the highest TLS is

returned.

• A2 or TLS-Bound: (Not Forced) The target with the highest TLS is

returned if it meets the TLS-Threshold. Otherwise, “Unknown” is

returned.

• A3 or TLS & D: (Not Forced) The target with the highest TLS is

returned if it has the largest Delta and meets the TLS-Threshold.

Otherwise, “Unknown” is returned.

• A4 or Big D: (Forced) The target with the highest Delta score is

returned.

 87

• A5 or D-Bound: (Not Forced) The target with the highest Delta is

returned if it meets the minimum Delta-Threshold. Otherwise,

“Unknown” is returned.

Again, Biggest-TLS and Big-D do not have thresholds to adjust, so they are not

plotted separately. However, Biggest-TLS is a special case of TLS-Bound where the

TLS-threshold is zero, so its result can be found at the end of the TLS-Bound line.

Similarly, Big-D can be found at the end of the D-Bound line.

The ROC curve for Clutter (T1) is not provided, since increasing the threshold

would, as minimum thresholds are no longer met, change “Clutter” declarations to

“Unknown” declarations which are still appropriate for Clutter. The ROC curve for

every other In-Library target is given as Figures 32 to Figure 35.

Figure 32. ROC Curve for Target 2, Tiger.

 88

Figure 33. ROC Curve for Target 3, Panzer.

Figure 34. ROC Curve Target 4, T-72.

 89

Figure 35. ROC Curve Target 5, Bradley.

 The current operating point, indicated by a dot for each algorithm, for the TLS-

Bound algorithm is always near the top True Positive part of the ROC curve for its

algorithm. This is due to the use of the minimum True Score for each target as their

individual thresholds. The current operating point may not be at the very top, because

instances where the True Score is equal to the highest TLS value are still returned as

“Unknown.” Adjusting the TLS-threshold above the minimum True Score would

move the current operating point along the ROC curve. However, it could change

algorithms based on Delta as discussed in Section III, Methodology. Examples of this

are shown in Figure 36.

 90

Figure 36. Adjusted Thresholds: Left (High Threshold), Right (Low).

Figure 36 shows that by increasing the TLS-threshold for Bradley from 0.645 to 0.7, the

current operating point for TLS-Bound moved down the ROC curve. In addition, the

points or curves for the Delta-based algorithms reduced as the Deltas are affected. On

the other hand, lowering the TLS-threshold increased the curve for D-Bound,

suggesting the threshold was too high to allow for competitive Delta scores.

Adjusting Delta-thresholds will further move the current operating point for Delta-based

algorithms along their ROC curves.

For TLS-Bound, the current operating point will only move down the ROC

curve as correct identifications become “Unknown” declarations due to an increased

threshold. If an increased threshold causes one target that was declared as a different

target, called a misidentification, to instead become a declaration of “Unknown,” the

ROC curve will not change as “Unknown” declarations count as misidentifications do:

as “FALSE.” At maximum threshold, only “Unknown” declarations are made, and the

probability of a true positive is zero.

 91

 Alternatively, the False Positive rates seem to reach an upper limit around 0.2 .

With five targets, identifications are spread throughout each of the five targets. Thus,

as the thresholds are set at their worst conditions, it is expected that one out of five, or

0.2, is about average for how bad a system can do. As the threshold increases,

declarations no longer occur and the probability of a False Positive reduces to zero.

Also of note, the current operating condition can be a point off of the curve, since the

curve is a smoothed line joining eleven points for thresholds along each algorithm.

More detail on how ROC curves are generated is included in Section III, Methodology.

 The ROC curve indicates that T-72 far surpasses the other targets in

performance as its ROC curve is the closest to the upper left. The Bradley also shows

a good ROC curve for the two algorithms based on TLS, but the current operating point

for TLS & D is bad. As these two targets have high TLS-thresholds, this could

indicate a higher TLS-threshold being more appropriate.

All of the ROC curves show the TLS-Bound as the best algorithm using these

quantifiers. This is indicated as the blue curve and current operating point are higher

than the others, showing better true positive values. However, the current operating

point is generally further right than the current operating points for the other two

algorithms. This indicates that under current conditions, the TLS-Bound algorithm

will provide the best True Positive probability in return for a less favorable False

Positive probability. Determining which algorithm is the best requires the preference

of these two probabilities to be weighed.

The Bradley ROC curve for TLS & D shows the current operating point is a

low point on the TLS & D curve. This means either the TLS-threshold for the Bradley

is too high, or the other TLS-thresholds are too low. By eliminating only the

 92

obviously wrong events in the TLS-Bound algorithm, the high threshold prevented the

algorithm from having a Delta that could beat the Delta of the other algorithms. Thus,

the TLS-threshold for Bradleys should be lowered or the TLS thresholds for the other

targets increased. The current operating point for the Tiger using the D-Bound (All)

algorithm lies in the middle of the curve. This shows the Delta threshold for Tiger is

too high. A lower threshold would only affect Tiger, and significantly raise True

Positives with a moderate raise in False Positives. To show how this would work, the

Delta-threshold was changed from 0.05 to -1.00 and the results are shown below in

Figure 34.

Figure 37. D-Bound Current point changing with Delta-threshold.

 The ROC curves provided many insights into the system. They showed which

TLS-thresholds could be increased or reduced and which Delta-thresholds could be

increased and reduced. They also show TLS-Bound clearly outperforming the other

two algorithms in True Positive probabilities. However, they only provide information

at the system level.

A modified ROC curve, the Vertical ROC curve, is needed to show how

parameters and algorithms would perform from the user’s point of view. These curves

are given as Figure 38 to Figure 41.

 93

Figure 38. Vertical ROC Curve for Target 2, Tiger.

Figure 39. Vertical ROC Curve for Target 3, Panzer.

 94

Figure 40. Vertical ROC Curve for Target 4, T-72.

Figure 41. Vertical ROC Curve for Target 5, Bradley.

 Unlike the graphs for the ROC curves, these show the current operating

conditions for TLS-Bound to be on the low end of the curve. This is because a lower

threshold results in more declarations and more of a chance that other targets were

declared “TRUE.” The False Negatives seem to have an upper bound at 0.2 . This

occurrence is explained in Section III, Methodology, but shall be repeated briefly here.

 95

At the highest threshold, the probability of a “FALSE” or “Other” declaration

goes to one as everything is declared as “Unknown.” The probability of it being

TRUE can only be as high as the prior probability, which was entered earlier as 0.2 for

all targets. Thus, the probability of TRUE and “FALSE” is 0.2, since all declarations

are “Unknown” or “FALSE.” Thus the Negative Predictive Value, P(TRUE |

“FALSE”), equals the P(TRUE & “FALSE”) divided by P(“FALSE”) which is 0.2

times 1 divided by 1. The resulting answer is 0.2 . Along with a more in-depth

explanation of this bound, further calculations for generating the Vertical ROC curve

are provided in Section III, Methodology.

 Again, the T-72 identification outshines the other identifications as the Vertical

ROC curve for T-72 remains in the upper left hand corner. Using TLS-Bound, the rest

show Positive Predictive Values from 0.65 to 0.8 with Negative Predictive Values

ranging from very small to 0.1 . This means, the probability the declaration is correct

will be around 0.7, but the probability it was detected as something else or called an

“Unknown” is less than 0.1 .

It should be reminded that “Unknown” is considered in the “Not a Tiger,” “Not

a Panzer,” “Not a T-72,” and “Not a Bradley” categories as it is counted as “Clutter.”

Thus, non-detections and unknowns are shown in the graphs as misidentifications. As

the threshold increases, more “Unknowns” are produced and the graphs reflect it with

the increased Negative Predictive Value.

When the Vertical ROC curve line is horizontal, increasing the threshold will

cause a large unfavorable increase in Negative Predictive Value for a smaller return in

improving the Positive Predictive Value. However, the line for Panzer is initially

vertical, indicating a good tradeoff will occur if the threshold is increased. Thus,

 96

increasing the TLS-threshold will ensure a “Panzer” is actually a Panzer without

causing a significant increase in misidentifications actually being Panzers. The

Bradley Vertical ROC curve with a diagonal line as a slope shows an equivalent

tradeoff. It is up to the user as to which, the Positive Predictive Value or the Negative

Predictive Value, is worth more and consequently what balance between Positive and

Negative Predictive Value is favorable.

Thus the Vertical ROC curves answer many questions about the Vertical

MOPs. The Panzer Vertical MOPs can be improved by increasing the TLS-threshold.

TLS-Bound or Biggest-TLS are the best ways to go, especially if low Negative

Predictive Values are desired. The T-72 identification is working wonderfully. The

Bradley and Tiger algorithms can be adjusted, but any improvement to Positive

Predictive Value will hurt the Negative Predictive Values.

 A quick look at the Normalized ROC curve will show how much information is

being given by TLS and by Delta scores. TLS is again the original score, or Target

Likeness Score, relating how like an actual target is to an In-Library target. The Delta

score is the difference between a TLS and the TLS-threshold for the target. The TLS-

thresholds are user-defined parameters set for each target individually. A good ROC

curve, with values closer to the upper left, will indicate the quantifier is providing much

useful information. The Normalized ROC curves for all four targets are provided in

Figures 42 to Figure 45.

 97

Figure 42. Normalized ROC Curve for Target 2, Tiger.

Figure 43. Normalized ROC Curve for Target 3, Panzer.

Figure 44. Normalized ROC Curve for Target 4, T-72.

 98

Figure 45. Normalized ROC Curve for Target 5, Bradley.

 The Normalized ROC curves for the T-72 looks very good for both TLS and

Delta scores. All curves show that TLS and Delta scores are providing a comparable

amount of useful information. No current operating condition can be shown on these

curves, as it is not possible to create one set threshold on score for any particular

algorithm.

 Priors are used for sensitivity analysis. Priors have some effect on Horizontal

MOPS: True Positives and False Positives. However, they have a much more

prominent effect on Vertical MOPS: Positive Predictive Values and Negative Predictive

Values. As the maximum, minimum, and most likely number of units for each target

on the field is provided, an analysis on Vertical MOPS can be accomplished on each

target for each algorithm. A look at TLS-Bound’s results for each target can show

what information can be obtained with these graphs. The TLS-Bound results for each

target are given in Figure 46 to Figure 49.

 99

Figure 46. Priors Curve for T2, Tiger, and A2, TLS-Bound.

Figure 47. Priors Curve for T3, Panzer, and A2, TLS-Bound.

 100

Figure 48. Priors Curve for T4, T-72, and A2, TLS-Bound.

Figure 49. Priors Curve for T5, Bradley, and A2, TLS-Bound.

 As noted before, the current operating conditions indicated by the points are at

the bottom of each curve. This is due to TLS thresholds being set low. The

minimum curve for each graph shows what the Vertical ROC curve would look like if

the target’s population is at the lowest possible value, while the population for each of

the other targets is at their highest possible value. The maximum curve is constructed

similarly.

 101

This shows the T-72 performs well if the population is at or above the most

likely level. The other targets are very sensitive to population changes. In all other

cases, if the population is smaller than expected, the TLS-threshold for that target

should be increased, since the curves at the minimum populations are practically

vertical. A vertical line means an increased Positive Predictive Value can be obtained

with very little increase in Negative Predictive Value. However, if the population

might be larger than suspected, a low threshold is definitely better as most of these lines

are horizontal. Bradley and Panzer show an equal tradeoff between Positive Predictive

Value and Negative Predictive Value, meaning an increase in TLS-threshold will

increase one value at an equal cost to the other. However, the Panzer’s curve at the

most likely value starts vertically. This means, the TLS-threshold may be increased,

improving Positive Predictive Value at no cost to Negative Predictive Value to a point.

Since the UIT is dynamic, the threshold can be adjusted until that point is reached.

The reason behind these curves is as the population decreases, the probability

the target is actually TRUE given a “FALSE” indication decreases. Likewise, at any

given threshold the probability the target is actually TRUE given a “TRUE” response

decreases as the probability of TRUE decreases with a reduced prior. In other words,

with a reduced prior, less of these targets can be encountered in the field, so the

probability of encountering one of these targets decrease. However, for the T-72 the

probability a target is TRUE given a “TRUE” response can still remain high if the

threshold is increased.

 As to changes in the operational environment, the results show the Positive

Predictive and Negative Predictive Values are highly sensitive to priors, and thresholds

should definitely be raised if the prior population of a target is expected to have been

 102

reduced. On the other hand, an increased threshold when the priors have increased

would result in more TRUE targets being returned as “Unknown” or another response,

so the threshold should be reduced to its minimum if the prior population is expected to

be high. Thus, as the situation on the battlefield changes, thresholds should definitely

be changed to ensure prior predictive and negative predictive values remain good.

These results are consistent with each algorithm.

 A quick glance at the Classifier Evaluation Quantifiers is very telling. The

summary statistics being used are Precision, Recall, F-Value, Accuracy and Mutual

Information. The summary statistics are shown in Table 29.

Table 29. Summary Statistics for first analysis.

Summary statistics are covered in Sections I, II and III in areas dealing with

summary data, summary statistics and possible classifier quantifiers. Since these

statistics are covered in three different sections, they will only be briefly covered here.

Accuracy can be defined as the combined probability of True Positives and True

Negatives. Precision is another way to measure Vertical MOPs. Recall is another

way to measure Horizontal MOPs. An F-Score is a “harmonic mean” between the two

whereas mutual information, “is defined as the Kullback-Leibler divergence between

the joint distribution of <output> y and <truth> t and the product of their marginals:”

(Wallach, 2004)

 103

Higher thresholds results in better predictive values, so precision should

increase from Biggest-TLS to TLS-Bound to TLS & D as more criteria are added to

change a response from a declaration to “Unknown.” In the same manner, precision

should increase from Big-D to D-Bound. This occurs when “Unknown” cases are

treated by taking them out of the picture. Thus, TLS & D (A3) gives the greatest

Precision, or Vertical MOPs. Based on Recall, or Horizontal MOPs, TLS-Bound (A2)

is the best. Based on Accuracy, F-Score and Mutual Information, TLS-Bound should

be used. With four classifier evaluation quantifiers to one, TLS-Bound seems to be the

winner. Although it did not beat TLS & D at Precision, TLS-Bound came in second,

so without adjusting thresholds, TLS-Bound should be used.

Second Analysis

Since the first analysis was accomplished with all thresholds at their minimums,

the second analysis increased most thresholds to an even level to give the Delta-based

algorithms a better opportunity. T-72’s TLS-threshold was not increased much due to

the excellent results all-around for T-72. Tiger’s TLS-threshold was not increased

very much, since the Vertical ROC curve suggests poorer performance if it is increased.

Raising thresholds will result in more returns of “Unknown” and less declarations of

other targets. However, it will also change Delta scores for every target.

As a reminder, one assumption stated is that, “Unknowns” are counted as

“Clutter.” Clutter is not examined in ROC and Vertical ROC curves, so “Unknown”

can be considered as “FALSE” in generating these graphs. Thus, the True Positive

values do not show an increase, and the ROC curves show minor changes. This is

because, returns as incorrect targets are becoming returns as “Unknown” and both are

considered as misidentifications. In other words, “FALSE” returns are changing to

 104

alternative “FALSE” returns as the threshold increases. The ROC curve will not

change much in True Positive value for TLS-Score until the threshold increases to

values that start changing “TRUE” declarations into “Unknown.”

Since True Positive cannot improve by changing thresholds for TLS-Score,

future studies might be encouraged to not consider “Unknowns” in the ROC curve

generation. However, considering “Unknowns” as misidentifications allow

“Unknowns” to be counted and penalized against the algorithm. Furthermore,

thresholds can be changed until the ROC curve begins to change for the worse.

Although this will not cause an improvement in the ROC curve, it will show changes in

the Vertical ROC curves. Thus, one useful technique is to change thresholds to

generate the best vertical MOPs possible until a significant change in horizontal MOPs

occurs.

The ROC curve can still change for Delta-based algorithms and for False

Positives. Delta scores are heavily based on thresholds, so many of the returns might

change as the thresholds change. The ROC curves show results for Tiger improving

and Bradley getting worse in Delta-based algorithms. In addition, T-72 and Bradley

both improve in the Delta-based algorithms. Bradley improves from approximately a

0.05 and 0.2 True Positive rate to a 0.63 True Positive for the Delta-based algorithms.

Other changes are relatively minimal. The changes in ROC curves are provided in

Figures 50 to Figure 54.

 105

Figure 50. ROC Curve changes for Target 2, Tiger.

Figure 51. ROC Curve for Target 3, Panzer.

Figure 52. ROC Curve Changes for Target 4, T-72.

 106

Figure 53. ROC Curve Changes for Target 5, Bradley.

Changing thresholds will change the Vertical ROC curves. A quick look

shows T-72 results remains good, so it will not be further reviewed. The Vertical ROC

curves for the other targets will be examined target by target starting with Tiger. The

original Vertical ROC curve is given as Figure 54, while the new Vertical ROC curve is

given as Figure 55.

Figure 54. First Analysis ROC Curve for Target 2, Tiger.

 107

Figure 55. Second Analysis ROC Curve for Target 2, Tiger.

Only the D-Bound algorithm seemed to change significantly for Tiger as the

TLS-threshold was not adjusted as much as the others. The results for the next target,

Panzer, are shown in Figure 53 and Figure 54.

Figure 56. First Analysis Vertical ROC Curve for Target 3, Panzer.

 108

Figure 57. Vertical Second Analysis ROC Curve for Target 3, Panzer.

The Positive Predictive Values for TLS-Bound increase by 0.08, for TLS & D

increase 0.1, and for D-Bound by 0.12. The Negative Predictive Values increased by

0.007, 0.05, and 0.02. Thus, TLS-Bound and D-Bound showed a good Positive

Predictive improvement at a low cost of Negative Predictive Value. The results for the

next target, Bradley, are shown in Figure 55 and Figure 56.

Figure 58. First Analysis Vertical ROC Curve for Target 5, Bradley.

 109

Figure 59. Vertical Second Analysis ROC Curve for Target 5, Bradley.

 The Vertical ROC curves for the Bradley show only shifts for each algorithm.

TLS-Bound increased its Positive Predictive Value by 0.04 at a cost of 0.0025 Negative

Predictive Value. The other algorithms had equal tradeoffs.

To see how the Vertical ROC curves would be effected by populations, a look

at the original and new graphs can be accomplished. Two examples are provided

below to examine these effects. The first example used the Vertical ROC curves for

Panzer using the D-Bound algorithm with the graphs shown in Figure 57.

Figure 60. Vertical ROC Curve for Panzer and D-Bound with New to the Right.

 110

A quick glance at these graphs shows that the curves for Panzer are now at

higher Positive Predictive Values. The worst case scenario for the Positive Predictive

Value at the current settings increased from 0.4 originally to 0.6, showing a vast

improvement. The worst case Negative Predictive Value increased by 0.02, but so did

its Positive Predictive Value. The most likely case improved its Positive Predictive

Value by 0.078 while only worsening by .007 in Negative Predictive Value. As the

thresholds have been increased, the current operating conditions are now more towards

the middle of each curve.

 The Vertical ROC curves only show subtle changes. Looking at the tables, it

appears thresholds higher than 0.7 would start making more monumental changes in the

curves. However, a quick look at the Classifier Evaluation Quantifiers can make sure

the analysis is going in the right direction. The old quantifiers are given in Table 30

and the new quantifiers are given in Table 31.

Table 30. First Analysis summary statistics.

Table 31. Second Analysis summary statistics.

 111

The tables show no change in Biggest-TLS (A1) as it cannot change with

thresholds. However, TLS-Bound (A2), TLS & D (A3) and D-Bound (A5) improve in

all quantifiers. Big-D (A4) improves in Precision and Mutual Information, but the

other statistics get worse. With the total improvement of three algorithms, it appears

the analysis is going in the right direction.

Conclusion

 At minimum thresholds, TLS-Bound outperformed the other algorithms.

Biggest-TLS is a special case of TLS-Bound with a zero threshold. The difference in

the minimum threshold case is with TLS-Bound, scores equal to the threshold would be

considered “Unknown” while Biggest-TLS would accept it as “TRUE.” However, the

ROC curves show the current threshold levels generally provided an equivalent True

Positive probability with a little smaller False Positive probability, which is desired.

The Delta-based algorithms could improve if the Delta thresholds were decreased, but

generally, TLS-Bound was the best algorithm after the first analysis.

 During the second analysis, small improvements occurred with the Vertical

ROC curves. The ROC curve showed improvements for most targets in all algorithms,

with the biggest improvements on the Delta-based algorithms. Still, TLS-Bound

seemed to dominate the Classifier Evaluation Quantifiers with either the best or close to

the best scores. The best algorithm is left to the decision-maker as the benefits of

Positive Predictive Probability versus Negative Predictive Probability as well as

tradeoffs between all quantifiers must be weighed.

Limitations in using the original ROC curve for TLS-based algorithms are

created by treating “Unknown” as “FALSE.” With higher thresholds,

misidentifications turn to “Unknown” but are still counted against the True Positive.

 112

As the threshold increases higher, correct identifications turn to “Unknown” and the

ROC curve gets worse. This allows analyses to determine how much the thresholds

can change to improve the Vertical ROC curves, and thus the Vertical MOPs, without

seriously degrading the ROC curve, or horizontal MOPs, for the TLS-based algorithms.

Since incorrect declarations may be considered worse than “Unknown”

responses, especially when a Friend is declared as “Foe” or a Foe declared as a

“Friend,” future tools may wish to analyze the situation where “Unknowns” are taken

out of the True Positive consideration and thus out of ROC curve generation.

 By looking at all quantifiers, an algorithm, TLS-Bound, appears to be the best

for this data set after two analyses. Furthermore, the results for TLS-Bound were

improved by changing the user-defined parameters and studying the results. The

results for “TLS & D” improved and might compete with TLS-Bound after further

customization of user-defined parameters. Also, sensitivity analysis was conducted to

show how changes in population could affect the results. In retrospect, populations

with less variance might be more realistic and provide for better bounds on sensitivity.

Still, this study shows how an algorithm can be selected along with user-defined

parameters being suggested after just two analyses.

 113

V. Discussion

Limitations

This study uses MS Excel due to availability. Unfortunately, MS Excel has

limitations that may be encountered if the UIT is used in practice.

 With a data file of five targets, the spawned MS Excel Workbook used a large

amount of memory and space. The file generated is 210 MB. In addition, one of the

worksheets used 100 of the 256 columns available. If the number of targets grows, the

limit on the number of columns may be exceeded. If the number of experimental runs

grows, a size limitation might be reached.

With only five targets, the MS Excel being used has shown a problem with

trying to close out the workbook and often gives an error. Fortunately, having the

master worksheet spawn a separate worksheet reduces the chances of corrupting the

original file.

In addition, having all the files dynamic can cause problems running the macro

on a slow machine. With five targets and over three thousand rows, generating the

workbook can take a computer fifteen minutes. This time could increase linearly or

exponentially with more data, as no study on time to compute has been attempted yet.

Future Studies

The UIT leaves much room for future study. As a first attempt to generate a

tool, the UIT is used to explore possible quantifiers. For this purpose, a small number

of targets were used. Future studies could include changing assumptions, treating

confusers as individual confusers, using changes in ROC Curves as a bound for

 114

changes, applying fusion, using priors differently for sensitivity analysis and testing the

UIT against more data samples.

Confusers as “Unknown” rather than natural “Clutter”

Currently, confusers are being pooled together as Clutter. T1 is being counted

as a correct classification for confusers. Confusers are equally sharing parts in all T1

calculations. However, confusers are different and in future studies should be

considered individually.

One reason for them to be treated individually is, as the Cost Matrix in Figure

29 showed, different confusers are confused with different In-Library target. Con11

and Con7 are codes used to identify two different confusers. Con11 is most often

declared a “T-72,” while Con7 is most often declared “Panzer.” Thus, the probability

of any Clutter, the combined confuser category, being declared as “T-72” will depend

on how many Con11s and Con7s will be encountered in the operating environment.

Furthermore, simply finding Con11 is heavily confused with T-72 may give

enough reason to make adjustments to the identification system or library. Con11

could be added as an In-Library target if it is the Clutter causing the most error.

“T1” or “Clutter” being considered a correct response for any confuser is also

arguable. “T1” is supposed to deal with natural clutter. Confusers can be any item,

natural or man-made, that may be confused with a target. Identifying all confusers as

“Clutter” assumes all confusers can be and have been identified. A better choice for a

correct response of confusers is as “Unknown” rather than “Clutter.”

Relevance of Unknown Misidentification Assumption

The results from the further analysis show a different picture of the relationship

between Horizontal and Vertical MOPs to user-defined parameters of thresholds for the

 115

TLS-based algorithms. This can be explained in the handling of “Unknown”

declarations.

In the assumptions, “Unknown” is considered the same as “Clutter.”

Alternatively, “Unknown” can be considered a “Non-declaration.” In the second case,

declaring one In-Library target as another target, for example a Tiger as a “Panzer,” is

considered worse than declaring the first target, Tiger in this example, as “Unknown.”

However, the UIT considers declaring a Tiger as an “Unknown” just as bad as declaring

it a “Panzer.” Thus, as thresholds are increased, misidentifications as another target,

like “Panzer,” are converted into “Unknown,” an equivalent misidentification.

Since a misidentification is still considered a misidentification, the Horizontal

MOPs do not change at low thresholds. Once the threshold increases high enough to

begin converting correct identifications into misidentifications, the Horizontal MOPs

and resulting ROC curve begins to change for the worse. Although the UIT does not

distinguish between “Unknown” misidentifications and misidentifications with other

targets, the UIT can still be useful in finding the cutoff point where correct

identifications begin to become “Unknown.”

This is useful because although the Horizontal MOPs did not change, the

Vertical MOPs changed with each increase in threshold. By increasing the thresholds

until a negative impact is observed on the ROC curve, a range of Vertical MOP values

is found. By using this method, the most desirable Vertical MOP can be obtained

without changing the Horizontal MOP. Thus, an optimal threshold level and Vertical

MOP can be discovered by adjusting thresholds until the Horizontal MOP is negatively

impacted.

 116

Use Solver to generate User-Defined parameters.

A careful selection of User-Defined parameters can improve all algorithms.

The selection of the User-Defined parameters, TLS-thresholds and Delta-threshold,

were generated for the sample data by looking at the data. Alternatively, once a

measure or quantifier is decided upon, some means of Linear Programming could be

used to maximize or minimize that measure or quantifier by adjusting the User-Defined

parameters to a small number of constraints. MS Excel already includes a Linear

Programming method called Solver that changes values subject to constraints to

maximize or minimize the value of any given cell in the workbook.

All elements of a Linear Programming problem are available. TLS-thresholds

must remain between zero and one. Delta-thresholds must remain between negative

one and positive one. The generated MS Excel workbooks use references. Thus, any

measure or quantifier, for example Accuracy of the TLS-Bound algorithm, can be used

as the desired output. Solver can seek to maximize Accuracy of the TLS-Bound

algorithm by changing TLS-thresholds and Delta-thresholds subject to their constraints.

Rather than Accuracy, a formula weighing different quantifiers could be entered into a

cell. Nothing irrevocable can be caused by changing the workbook, since the

workbook being used is generated by the Master workbook. If the workbook is

damaged by accident, the Master workbook can be used to simply generate a

replacement. Thus, rather than looking at the data, the initial analysis could use Solver

to suggest a starting point, or any analysis could use Solver to improve an existing

measure or quantifier.

Solver also requires a seed to start the Linear Programming problem. Based

on the seeds, Solver could find local minimums or local maximums by mistake.

 117

Rather than providing an in-depth look at Linear Programming at this stage of the study,

Linear Programming will be suggested as a possible means for a way forward, and VBA

as a possible means to generate seeds for use by the UIT.

Other Future Research.

Other research could include fusion techniques, changes in sensitivity analysis,

or simply testing against more data. This thesis has shown that T-72 performs

admirably in just about every case. Figure 44 even shows that normalized scores for

T-72 are excellent for making a “T-72” declaration if it was practical to use these

scores. A fusion technique could possibly check for whether or not the data suggest

“T-72” be returned before any other consideration is made. Although the data started

with only five values for each run, more information can be generated from these

values, and the application of fusion techniques to this information should be considered

in future research.

The method for dealing with sensitivity analysis may be too impractical.

Although straight-forward and easy to understand, using priors at the absolute minimum

and maximum estimates may create a wide and unreasonable bound for the Vertical

ROC curves. The decision-maker might be more interested in confidence rather than

the extreme what-if scenarios. Using random sampling with priors, a triangular

distribution, or some number other than the extremes may be more meaningful to the

decision-maker.

Contributions/Implications

The UIT adds much to selecting the best ATR algorithm. Not only does it

provide a way to visually compare multiple measures for multiple declarations, it

provides a method for improving each algorithm by choosing better User-Defined

 118

parameters. Thus, algorithms are not only being compared, but customized and

improved.

By creating a separate generated workbook using references to make all

calculations, the UIT opens the door for Linear Programming to be used. Any user can

select one measure as the primary measure or multiple quantifiers and weigh their

values into one cell. MS Excel’s Solver or any other Linear Programming method can

change the User-Defined Parameters of TLS-threshold between zero and one and Delta-

threshold between negative one and one to optimize the desired measure or quantifier.

The UIT also reduces a study’s dependency on knowing User-Defined

parameters beforehand. Rather than entering low, medium and high levels for each

threshold or carefully selecting thresholds before conducting a study, thresholds can be

changed on the spot with all quantifiers being updated as soon as the threshold changes.

This allows thresholds to be adjusted and customized on the spot for desired results.

The UIT also provides a new method for viewing error with Vertical ROC

curves. Vertical ROC curves provide a way to measure Vertical MOPs visually.

They suggest how changing User-Defined parameters can change the effectiveness to

the user. They also show when a benefit can be made in increasing Positive Predictive

Value or reducing Negative Predictive Value with little cost. The Vertical ROC curve

shows a tradeoff that is unseen by simply viewing Vertical MOP statistics.

The UIT also allows sensitivity analysis to be accomplished through Priors

curves. By plotting Vertical ROC curves at the extreme bounds of Prior probabilities,

the user can quickly identify how robust an algorithm is to uncertainties in the

operational environment. It also suggests how the algorithms should or need to change

as the operational environment changes.

 119

The UIT allows multiple quantifiers to be compared and multiple errors to be

analyzed in order to select the best ATR algorithm. It allows improvements to the

User-Defined parameters to be measured on the spot. It allows tradeoffs in both

Horizontal and Vertical MOPs to be visually seen. It allows sensitivity to priors to be

observed. It opens the door for any of multiple quantifiers to be optimized. With

these capabilities, the ATR UIT provides information to the decision-maker to choose

the best ATR algorithm for any specified operational environment.

 120

 Appendix A: Worksheet List

Master Workbook

• “Main” – Used to browse for data

• “Thresholds”

o Allows user to enter User-Defined parameters

� TLS-thresholds

� Delta-thresholds

� Prior probabilities

o Spawns “Generated Workbook”

• “Data” – Holds data browsed for in main

Generated Workbook

• “Data” – Holds sorted data

• “A2Curr” – Calculates current TLS-Bound operating point

• “A2” – Calculates ROC and Alternate ROC results for TLS-Bound

• “A3Curr” – Calculates current TLS & D operating point

• “A3” – Calculates ROC and Alternate ROC results for TLS & D

• “A5Curr” – Calculates current D-Bound operating point

• “A5” – Calculates ROC and Alternate ROC results for D-Bound

• “Algorithms”

o Has table and graphs for ROC Curves

o Has table and graphs for Alternate ROC Curves

o Allows user to change User-Defined Parameters

 121

o References data from “A2Curr,” “A3Curr,” “A5Curr, “A2,” “A3”

and “A5”

• “Scores” – Calculates ROC and Alternate ROC results for TLS

• “Scores2” – Calculates ROC and Alternate ROC results for Delta Scores

• “Algorithms2”

o Has table and graphs for Measures ROC Curves

o References data from “Scores” and “Scores2”

• “PriorsA2” – Generates Priors Curve for TLS-Bound

• “PriorsA3” – Generates Priors Curve for TLS & D

• “PriorsA5” – Generates Priors Curve for D-Bound

• “Stats” – Calculates Classifier Evaluation Metrics

• “ClassMetrics” – Presents Classifier Evaluation Metrics

• “Sheet1” possibly through “Sheet3”

o Left over sheets from the creation of the generated workbook

o Not deleted automatically as the creation of these sheets depend on

the computer user’s MS Excel preferences.

 122

 Appendix B: Pseudocode

Public Variables

Public Const ThisXLFile As String = "<Name of Master Workbook>.xls"

Public MyMasterBook As Workbook 'The Master Workbook Referenced twice.

Public SummarySheet As Worksheet 'Contains copied data.

Function MyParseCol(MyCol As Range) As String

Returns the Column of a cell with no references.

Sub MyGetPath2()

Allows the user to browse for a data file.

Records the filename and the directory path to the data file.

Calls MyReturnPath() to determine the directory path.

Calls MyReturnFilename() to determine the filename.

Calls MyCopyData() and MyThresholdData().

Function MyReturnPath(LongThing As String) As String

Determines the Directory Path of the browsed file.

Function MyReturnFileName(LongThing As String) As String

Determines the filename of the returned file.

Sub MyCopyData(MyPath As String, MyFileName As String)

 This sub creates a copy into a new file of the data in the data file. It adds the

copied data into a worksheet on the new file entitled “data.” It modifies "data" and

"thresholds"

 Assign the workbook directory to the current directory.

 Sets two of the public variables

 123

 Set MyMasterBook = ThisWorkbook

 Set SummarySheet = Workbooks(ThisXLFile).Worksheets("Data")

 Clears the data sheet in the master file.

 Copies information.

Pastes information.

 Autofits

Sub MyThresholdData()

Copies information into the master file “Thresholds” worksheet.

 Adjusts colors and borders accordingly.

Private Sub MyCreateOutput(MyOutFile As String)

Spawns a separate output file.

Adds all relevant worksheets to the new file along with the correct format. The

worksheets added to the new, output file are: "ClassMetrics,” "Stats," "PriorsA5,"

"PriorsA3," "PriorsA2," "Algorithms2," "Scores2," "Scores," "Algorithms," "A5,"

"A5Curr," "A3," "A3Curr," "A2," "A2Curr," and "Data."

Sub MyComputeAlgorithms()

Calls all remaining algorithms once the user defined parameters have been

entered. Calculations are turned on and off to shorten computation time. Entire Sub

program is included below:

 Call MyCreateOutput(MyOutFile)

 Call MyAlgorithms(MyOutFile)

 Call MyDataSheet(MyOutFile)

 Application.Calculation = xlManual

 Call MyA2Curr(MyOutFile)

 Call MyA2(MyOutFile)

 Call MyA3Curr(MyOutFile)

 Call MyA3(MyOutFile)

 124

 Call MyA5Curr(MyOutFile)

 Call MyA5(MyOutFile)

 Calculate

 Application.Calculation = xlAutomatic

 Call MyAlgoFill(MyOutFile)

 Call MyAlgoGraphs(MyOutFile)

 Call MyScores(MyOutFile)

 Call MyScores2(MyOutFile)

 Call MyAlgorithms2(MyOutFile)

 Call MyScoreGraphs(MyOutFile)

 Call MyPriors(MyOutFile, "PriorsA2")

 Call MyPriors(MyOutFile, "PriorsA3")

 Call MyPriors(MyOutFile, "PriorsA5")

 Call MyPriorsA2(MyOutFile, "PriorsA2", "A2", "A2Curr")

 Call MyPriorsA2(MyOutFile, "PriorsA3", "A3", "A3Curr")

 Call MyPriorsA2(MyOutFile, "PriorsA5", "A5", "A5Curr")

 Call MyStatsFile(MyOutFile)

 Call MyFixBayes(MyOutFile, "A2Curr")

 Call MyFixBayes(MyOutFile, "A2")

 Call MyFixBayes(MyOutFile, "A3Curr")

 Call MyFixBayes(MyOutFile, "A3")

 Call MyFixBayes(MyOutFile, "A5Curr")

 Call MyFixBayes(MyOutFile, "A5")

 Call MyFixBayes(MyOutFile, "Scores")

 Call MyFixBayes(MyOutFile, "Scores2")

Sub MyFixBayes(MyOutFile As String, MyCurFile As String)

 Uses the created output filename and the worksheet in question as parameters.

 Fixes six of the algorithm computation sheets by adjusting the P(“T”|~T) on

each file.

 125

 Uses many references as each target must be done separately and current sheets

must be updated with information already calculated

Fill in Probabilities referring to “Algorithms”

Place under each calculation.

Requires a nested, For, Do, For loop.

Inside For does each row.

Do loop does each threshold.

Outside For does each target.

Calculates each target’s P(“T” | false target) for each false target

Replaces P(“T”|~T)

Sub MyStatsFile(MyOutFile As String)

 Fills in “Stats” and “ClassMetrics”

 Separate declarations by placing Truths into the declaration column for each

algorithm.

Count Truths per column of declaration

 Start Calculating each summary statistic

 Write priors, P(T)

 Recall: Write P(“T”|T)

 Update ClassMetrics

Accuracy: Write P(T & “T”)

Sum columns to find P(“T”)

Update ClassMetrics

Precision: Write P(T|”T”)

 F Score: Uses Precision and Recall

 Update ClassMetrics

 Mutual Information:

 Write P(T) * P(“T”)

 Write Quotient: P(T&”T”)/(P(T)*P(“T”))

 Write Log: Log(Above)

 Write Product: P(T)*P(“T”)*Above

 Sum all for MI

Sub MyMakePriorGraph(…)

 126

 Make three lines (Max, Most Likely, Min)

 Make three current points

 Add descriptive chart options

Sub MyPriorsA2(MyOutFile As String, MyPlaceSheet As String, MyFirstSheet As

String, MySecondSheet As String)

Follows MyPriors() which writes the Full Priors Matrix references

 Writes Thresholds

Fills in the top heading from either A2, A3 or A5

 Fills in the rest of the top with the new Probabilities for P(T) and P(~T)

Fills in the top heading from either A2Curr, A3Curr or A5Curr

 Fills in the rest of the top with the new Probabilities for P(T) and P(~T)

 Copy information from Top into a table at the Bottom

 Sends information to make a graph

 Call MyMakePriorGraph(MyOutFile, MyPlaceSheet,

MyGraphCell, MyXTitle, MyYTitle, MyGTitle)

Sub MyPriors(MyOutFile As String, MyPriorFile As String)

Writes the Full Priors Matrix references from Algorithms into the Priors

worksheets

Sub MyDataSheet(MyOutFile As String)

 Copies data from the master file into the output file.

 Classifies the data file

 Indicates if it is clutter or not

 Ranks the rest by priority

 Sorts the data

 The sort is used in creating meaningful CountIfs to determine Statistics

Sub MyMakeEntry(MyOutFile As String, MyEntryCell As Range)

 Colors the cell differently from the background

 127

 Used to determine which cells can be changed

Sub MyAlgorithms2(MyOutFile As String)

 Write Heading

 Write TLS-Scores

Write Alternate ROC TLS-Scores

 Write Delta Scores

 Write Alternate ROC Delta-Scores

Sub MyAlgorithms(MyOutFile As String)

Write Headings

 Calculate Priors

Sub MyAlgoFill(MyOutFile As String)

 Write Headings

 Write A2Curr ROC then Alternate ROC

 Write A2 ROC then Alternate ROC

 Write A3Curr ROC then Alternate ROC

 Write A3 ROC then Alternate ROC

 Write A5Curr ROC then Alternate ROC

 Write A5 ROC then Alternate ROC

Sub MyMakeScore(MyOutFile As String, MyStartCell As Range, MyXTitle As

String, MyYTitle As String, MyGTitle As String)

 Creates the graphs for Algorithms2

 Two lines on each curve

Sub MyMakeGraph(MyOutFile As String, MyStartCell As Range, MyXTitle As

String, MyYTitle As String, MyGTitle As String)

Sub MyScoreGraphs(MyOutFile As String)

 128

Setup Graph

 Call MyMakeScore() to make ROC graph

 Setup next graph

 Call MyMakeScore() to make Alternate ROC graph

Sub MyAlgoGraphs(MyOutFile As String)

Setup Graph

 Call MyMakeGraph () to make ROC graph

 Setup next graph

 Call MyMakeGraph () to make Alternate ROC graph

 Differs from MyScoreGraphs by the different function calls (due to different

requirements), “Algorithms” vs “Algorithms2” and different size of offsets needed to

traverse the page.

Sub MyScores(MyOutFile As String)

 Copy Data

 Reference Probabilities

 Write/Calculate Scores

 For each target, vary thresholds and calculate stats for ROC and Alt ROC

Curves

Sub MyScores2(MyOutFile As String)

Copy Data

 Reference Probabilities

 Write/Calculate Delta

 Write new Deltas with zeroes instead of negatives

 Write/Calculate Delta Scores

 For each target, vary thresholds and calculate stats for ROC and Alt ROC

Curves

Sub MyA2(MyOutFile As String), MyA3(…), MyA5(…),

Copy Data

 129

Calculate Max

Calculate Delta

Write the Max_Delta

Write the Threshold

Writes the Delta

Calculate Beat_Delta: The amount the Max_Delta beats the next delta.

Paste TLS Data

Make room for Delta Data

 Make room for Other Delta Data

 Paste TLS Thresholds

 Paste Delta Threshold

Calculate Delta Data: TLS Data – TLS Threshold

 Paste Probabilities

Calculate Max: The maximum TLS Score

 Calculate A1: Max TLS Score’s Target

 Calculate Other Delta Data

Eliminate the Delta of the Max TLS Score’s Target

Write other data so it can be summed

 Other_D:

MyA2, MyA5: Highest delta not of Max TLS Score’s Target

MyA3: Highest delta not of Max_D Score’s Target

 Thres: Threshold of the Max TLS Score’s Target

 Delta: of the Max TLS Score’s Target

 Beat_D: Used in A6, a possible algorithm. Changed for use in myA3

MyA2, MyA5: Max_D – Other_D (based on TLS)

MyA3: Max_D – Other_D (based on Delta)

 Calculate A2: A1, but Delta must be >0

 MaxD: Maximum Delta

Calculate A3:

Delta = Max Delta

Delta > Other_D doesn’t work, because Other_D had to change

 Calculate A4: Max Delta’s Target

 Calculate A5:

Max Delta’s Target

Beat_D > D_Thres

Correct for A2 and A5. Wrong for A3

 130

 Calculate A6: Delta > D_Thres

 Write Top Heading

 Write Bottom Logic

Changes from MyA2, MyA3, and MyA5

“A” = “T” and T

“B” = “T” and ~T

“C” = “~T” and T

“D” = “~T” and ~T

Code for “A,” “B,” “C,” and “D” written below

 Write Thresholds

 Write Top Logic

“A,” “B,” “C,” and “D” code

 MyA2(), MyCurrA2()

 MyCurString = "=IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) & "=1,"

& MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) & "=1, $I23> " & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) _

 & "),""A"",IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=1,$I23>" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & "," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) _

 & "=0),""B"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$I23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & ")," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) _

 & "=1),""C"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$I23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & ")," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0),""D"",""E""))))"

 131

 MyA3(), MyCurrA3()

 MyCurString = "=IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) & "=1,"

& MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) & "=1, $I23> " & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) _

 & ",$I23-" & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) _

 & ">=$J23),""A"",IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=1,$I23>" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) _

 & ",$I23-" & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) & ">=$J23," &

MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) _

 & "=0),""B"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$I23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) _

 & ",$I23-" & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) & "<$J23)," &

MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) _

 & "=1),""C"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$I23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) _

 & ",$I23-" & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) & "<$J23)," &

MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) _

 & "=0),""D"",""E""))))"

 MyA5(), MyCurrA5()

 132

 MyCurString = "=IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) & "=1,"

& MyNewPlace.Offset(0, -3 - MyNewCount).AddressLocal(RowAbsolute:=False,

ColumnAbsolute:=True) & "=1, $L23> " & MyNewPlace.Offset(-1,

0).AddressLocal(RowAbsolute:=True, ColumnAbsolute:=False) _

 & "),""A"",IF(AND(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=1,$L23>" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & "," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) _

 & "=0),""B"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$L23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & ")," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) _

 & "=1),""C"",IF(AND(OR(" & MyNewPlace.Offset(0, -1 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0,$L23<" & MyNewPlace.Offset(-1, 0).AddressLocal(RowAbsolute:=True,

ColumnAbsolute:=False) & ")," & MyNewPlace.Offset(0, -3 -

MyNewCount).AddressLocal(RowAbsolute:=False, ColumnAbsolute:=True) &

"=0),""D"",""E""))))"

Sub MyA2Curr(…), MyA3Curr(…), MyA5Curr(…)

Altered from MyA2(), MyA3(), and MyA5() respectively

 Eliminates loops

 Measures against user-defined threshold not a predetermined set

 133

 Bibliography

1. Albrecht, Timothy W. “Combat Identification with Sequential Observations,

Rejection Option, and Out-Of-Library Targets,” Air Force Institute of

Technology (AU), Wright-Patterson AFB OH, (05-03)

2. Hopley, Lara. Schalkwyk, Jo van.

http://www.anaesthetist.com/mnm/stats/roc/Findex.htm

3. Leap, Nathan J., Clemans, Paul P., Bauer, Kenneth W. Jr., and Oxley, Mark E.

“An Investigation of the Effects of Correlation and Autocorrelation on

Classifier Fusion and Optimal Classifier Ensembles,” Air Force Institute of

Technology (AU), Wright-Patterson AFB OH

4. Parker, David. “FW: Re: Definition of "Score",” E-mail to Bauer, Kenneth W

Ph.D. 29 Sep. 2006.

5. Roli, Fabio. “FUSION 2002 TUTORIAL: Fusion of Multiple Classifiers Part

I,” University of Cagliari, Dept. of Electrical and Electronics Eng., Italy, 2002.

6 Roli, Fabio. “FUSION 2002 TUTORIAL: Fusion of Multiple Classifiers Part

II,” University of Cagliari, Dept. of Electrical and Electronics Eng., Italy, 2002.

7. Roli, Fabio. “FUSION 2002 TUTORIAL: Fusion of Multiple Classifiers Part

III,” University of Cagliari, Dept. of Electrical and Electronics Eng., Italy,

2002.

8. Roli, Fabio. “FUSION 2002 TUTORIAL: Fusion of Multiple Classifiers Part

IV,” University of Cagliari, Dept. of Electrical and Electronics Eng., Italy,

2002.

9. Sadowski, Charles. “RE: Data for AFIT student,” E-mail to Capt. David A.

Kerns. 18 Aug. 2006.

10. Sadowski, Charles. “RE: Image quality,” E-mail to Dr. Kenneth Bauer. 5 Jun.

2006.

 134

11. Simon, Steve. http://www.childrensmercy.org/stats/ask/roc.asp

12. Wackerly, Dennis D., William Mendenhall, and Richard L, Schaeffer.

Mathematical Statistics with Applications. Pacific Grove, CA: Duxbury, 2002.

13. Wallach, “Evaluation Metrics for Hard Classifiers,” University of Cambridge,

27 Nov 2004

14. Wikipedia, http://en.wikipedia.org/wiki/Positive_predictive_value

 135

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

22-03-2007
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Jun 2006 – Mar 2007

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 AUTOMATIC TARGET RECOGNITION USER INTERFACE TOOL

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Kerns, David A., Captain, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/07-15

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Intentionally Left Blank

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 A computer tool to aid in selecting the best Automatic Target Recognition (ATR) algorithm is developed. The program considers
many quantifiers, accepts user-defined parameters, allows for changes in the operational environment and presents results in a
meaningful way. It is written for Microsoft Excel.
 An ATR algorithm assigns a class label to a recognized target. General designations can include “Friend” and “Foe.” The error of
designating “Friend” as “Foe” as well as “Foe” as “Friend” comes with a high cost. Studying each algorithm’s error can minimize
this cost. Receiver Operating Characteristic (ROC) curves provide only information on the probabilities given a system state of
declaring up to three class labels: “True,” “False” or “Unknown.” Other quantifiers, including an alternate ROC curve, are developed
in this study to provide information on the probability of a system state given any of multiple declarations, which is more useful to the
user. Sensitivity to prior probabilities, suggestions for user-defined parameters and areas for future research are identified as the User
Interface Tool is described in detail in this thesis.
15. SUBJECT TERMS

CID, Target Recognition, Target Classification, Error Analysis, Interfaces, Vertical, Operating Characteristic Curve, Prior Probability,
Predictions

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Kenneth W. Bauer (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

150

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4328; e-mail: Kenneth.Bauer@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

